

ecology and environment, inc.

International Specialists in the Environment ~

SFUND RECORDS CTR 2388327

350 Sansome Street #300, San Francisco, California 94104 Tel: (415) 981-2811, Fax: (415) 981-0801

	MEMORANDUM O S	
TO:	Rachel Loftin, USEPA Region 9 W 8129	
FROM:	James James, Ecology and Environment, Inc. START	i
SUBJECT:	Completed Work	
DATE:	August 7, 1998	
cc:	Karen Nelson, Project Officer	
Attached is the	following completed document:	
Site Na EPA II		
Latitude: <u>33°</u> 5	* * * For USEPA Use Only * * * 51'26.0"N Longitude: 118°16'22"W	
CERCLIS Data	a Changes:	
•		end ES
Lead Agency: _	S	· <u>·</u>
Approval of Sit	te Assessment Manager ————————————————————————————————————	-
Sign Off Date	8-18-98	
Document Scre	eening Coordinator	
Chief, States, P	Planning and Assessment Office	

REMEDIAL SITE ASSESSMENT DECISION - EPA REGION 9

Site Name: Victoria Golf Course		EPA ID #: <u>CAD980818926</u>
Alias Site Names:		
City: Carson	State: California	
Report Dated: August 1998	Report Type: Expanded Site Inspec	ction
Report developed by: Tom Genol	io, Ecology & Environment, Inc.	
DEGGGGG		
DECISION:		
☐ 1. Further Remedial Site As	ssessment under CERCLA (Superfund)) is <u>not</u> required because:
☐ 1a. Site does not qu Action - NFA) a	alify for further remedial site assessment und:	under CERCLA (No Further
☐ EPA is retaining interest in the si	g this site in CERCLIS because the Federa te.	l Superfund program still has an
action, or an app means that EPA sites may be reto	g this site in CERCLIS because it does no propriate Federal Superfund response action believes no further Federal Superfund resurned to the CERCLIS site inventory if neural consideration is discovered.	on has been completed. This sponse is appropriate. Archived
☐ 1b. Site may qualify	for further action, but is deferred to:	RCRA □ NRC \O
2. Further Assessment Need	led Under CERCLA	a con sol la
2a. (Optional) Priority: ☐ Higher	□ Lower	Jan Sont B
2b. Activity Type ☐ PA ☐ SI	ESI TORONG OTT Description Other _	addl -
DISCUSSION/RATIONALE:		
Site	reguires Sail Sa	empline at
dioths	1 9 5011	end around water
- Company	0 1 00	
Rampung	at lepths below	15 bas. Howas
water Sh	ows young Oblobudo	C, 1,2 DCE; 1,2,0CA;
and TCI	greater than MCL	s at 75' bag. He were
Report Reviewed, The imm	mediate vicinity of	this property.
Approved and Site	- P.11 A.	8-18-98

ecology and environment, inc.

International Specialists in the Environment

350 Sansome Street #300, San Francisco, California 94104 Tel: (415) 981-2811, Fax: (415) 981-0801

July 28, 1998

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105 START#: 099701-012 TDD#: 09-9705-0013 PAN#: 0191DTTGXX

Attention: Kare

Karen Nelson, Project Officer

Subject:

Victoria Golf Course Site, Los Angeles County, California

Attached is Ecology and Environment, Inc.'s Superfund Technical Assessment and Response Team (START) Expanded Site Inspection (ESI) Report for the Victoria Golf Course site. This report is based upon an investigation conducted by the California Department of Toxic Substances Control (DTSC) in 1996. DTSC prepared an ESI report for the site which the START reviewed in 1997. DTSC responded to the ESI review, but a number of issues and errors remained. Upon consultation with Rachel Loftin, START was directed to revise the ESI report rather than review the DTSC report again. The START had no role in scoping or implementing the investigation and had to rely on data as provided by DTSC or available from other agencies. As such, the START can't assure the validity or accuracy of all information presented.

If you have any questions regarding this ESI Report, please do not hesitate to contact me.

Respectfully submitted,

Jim James

Superfund Technical Assessment and Response Team Member

Attachment

copy: Rachel Loftin, EPA Task Monitor

Expanded Site Inspection Report

Victoria Golf Course Los Angeles, California

Prepared for:
U.S. Environmental Protection Agency
Region 9
Contract No. 68-W6-0010
TDD No.: 099705-013

August 1998

Prepared by:
Superfund Technical Assessment and Response Team
Ecology and Environment, Inc.

Superfund Technical Assessment and Response Team

Expanded Site Inspection Victoria Golf Course Los Angeles County, California

TDD#: 099705-013 PAN#: 0191DTTGXX

Submitted to:

Karen Nelson
Project Officer
U.S. Environmental Protection Agency
Region 9 - Planning and Assessment Section

Contract No. 68-W6-0010

Prepared by:

START Ecology and Environment, Inc.

August 1998

able of Contents

Secti	on Pa	age
1		1-1 1-2
2	Site Description and History 2.1 Location 2.2 Site Description 2.3 Operational History 2.4 Regulatory Involvement 2.4.1 United States Environmental Protection Agency 2.4.2 California Environmental Protection Agency 2.4.2.1 Department of Toxic Substances Control 2.4.2.2 Regional Water Quality Control Board 2.4.3 County of Los Angeles 2.4.4 South Coast Air Quality Management District (SCAQMD)	2-1 2-3 2-4 2-4 2-4 2-4 2-5 2-5
3	Summary of Investigative Efforts	3-1
4	Hazard Ranking System Factors 4.1 Sources of Contamination 4.2 Groundwater Pathway 4.2.1 Hydrogeological Setting 4.2.2 Groundwater Targets 4.2.3 Groundwater Pathway Conclusion 4.3 Surface Water Pathway 4.4 Air and Soil Exposure Pathway	4-1 4-1 4-3 4-5 4-5
5	Emergency Response Considerations	5-1
6	Summary	6-1

Table of Contents (Cold)

Section

Appendix

- A References
- B Validated Data
- C Contact Log

Table		age
3-1	Soil Sample Results	3-4
3-2	Groundwater Sample Results	3-6
4-1	Water Purveyors and Wells Within 4 Miles of the Victoria Golf Course	4-4

ist of Illustrations

Figure		
2-1	Site Location Map	2-2
3-1	Sampling Locations	3-3

ist of Acronyms and Abbreviations

BEI Bechtel Environmental, Inc.

bgs below ground surface

BKK Ben K. Kazarian

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act of 1980

CERCLIS Comprehensive Environmental Response, Compensation, and

Liability Information System

CLP Contract Laboratory Program

DCA dichloroethane DCE dichloroethene

DPR Los Angeles County Department of Parks and Recreation

DPW Department of Public Works

DTSC California Environmental Protection Agency Department of Toxic

Substances Control

E & E Ecology and Environment, Inc.

EPA U.S. Environmental Protection Agency

ESAT EPA's Environmental Services Assistance Team

ESI expanded site inspection

HRS Hazard Ranking System

MWD Metropolitan Water District

μg/L micrograms per liter mg/kg milligrams per kilogram

PA Preliminary Assessment

PCE tetrachloroethene
ppb parts per billion
ppm parts per million

RWQCB Regional Water Quality Control Board

SCAQMD South Coast Air Quality Management District

SI Site Inspection

SIP Site Inspection Prioritization

START Superfund Technical Assistance and Response Team

SVOC semi-volatile organic compound

List of Acronyms and bbreviations (cont.)

SWAT Solid Waste Assessment Test

TCE trichloroethene

VGC Victoria Golf Course

VOC volatile organic compound

Introduction

EPA

U.S. Environmental Protection Agency

CERCLA

Comprehensive Environmental Response, Compensation, and Liability Act of 1980

DTSC

California Environmental Protection Agency Department of Toxic Substances Control

F٩

expanded site inspection

VGC

Victoria Golf Course

CERCLIS

Comprehensive Environmental Response, Compensation, and Liability Information System

E & E

Ecology and Environment, Inc.

DΔ

Preliminary Assessment

SI

Site Inspection

SIP

Site Inspection Prioritization

The U.S. Environmental Protection Agency (EPA), Region 9, under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986, tasked the California Environmental Protection Agency Department of Toxic Substances Control (DTSC) to conduct an expanded site inspection (ESI) of the Victoria Golf Course (VGC) site in Carson, Los Angeles County, California.

The VGC site was identified as a potential hazardous waste site and entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) on June 1, 1981 (CAD 980818926). The site was entered into CERCLIS based on suspected gas releases noted by city inspectors, a referral of the site in 1981 from the California Integrated Waste Management Board to the EPA Open Dump Inventory list, and a subsequent listing in federal Environmental Protection Agency programs.

DTSC conducted a field sampling effort to gather data as part of an ESI under the CERCLA, or Superfund. The ESI builds on the body of information obtained during the Ecology and Environment, Inc., (E & E) Preliminary Assessment (PA), dated August 1, 1984, and Screening Site Inspection (SI), dated June 22, 1989, and a Site Inspection Prioritization (SIP) dated March 23, 1994 conducted by Bechtel Environmental, Inc. (BEI). As part of this ESI, the DTSC collected additional data by conducting a site reconnaissance visit and collecting physical environmental samples to analyze for the presence of hazardous substances.

Field sampling was conducted under field sampling plan protocols. Laboratories participating in the EPA Contract Laboratory Program (CLP) were used for analyses. Laboratory services were obtained and coordinated through the EPA Quality Assurance Management Section. Subsequent to ESI field activities, the DTSC prepared a draft ESI Report. The EPA then tasked E & E's Superfund Technical Assistance and Response Team (START) to complete this ESI Report.

1.1 Apparent Problem

There are two apparent problems on site:

- Historic deposition of wastes into an unlined landfill beneath the VGC site has caused groundwater contamination. Vinyl chloride, tetrachloroethene, dichloroethene, and chlorobenzene were detected at elevated levels in groundwater samples collected downgradient of the site and compared to those collected upgradient of the site.
- Although sampling was limited to the shallow aquifer, which is not used for drinking, the shallow aquifer is interconnected with deeper drinking water aquifers.

BEI Bechtel Environmental, Inc. CLP

Contract Laboratory Program

START
Superfund Technical Assistance and Response Team

2

Site Description and History

2.1 Location

The VGC site is located at 340 East 192nd Street in Carson, California. The geographic coordinates of the site are 33° 51' 26.0" N latitude and 118° 16' 22" W longitude (Township 4 South, Range 13 West, Section 5, Mount Diablo Baseline and Meridian, Torrance Quadrangle, Calif., 7.5-minute quadrangle). The site location is shown in Figure 2-1.

The VGC site is bordered on the north by single-family dwellings, the remaining portion of the Victoria Regional Park, and the Towne Avenue Elementary School. To the west of the site is an area of light industry and the Goodyear Airship Operations. To the east of the site are single-family dwellings and California State University at Dominguez Hills. The VGC site is bisected by the 405 Freeway and the unlined, earthen Dominguez Channel (see Figure 2-1). The concrete-lined Del Amo Channel borders the southern portion of VGC along Del Amo Boulevard.

2.2 Site Description

The VGC site occupies 348 acres in a mixed recreational, commercial, residential, and industrial area. The site is a former landfill that is now closed and occupied by VGC, a portion of the Victoria Regional Park (L.A. County), Dominguez Golf Center, Goodyear Airship Operations, Jaeil Farms, and the 65-unit Don Dominguez Apartments. This entire site is called the Victoria Golf Course site, although the "Victoria Golf Course" recreational business is only a portion of the whole site.

Both golf courses have small clubhouse and restaurant buildings; the Dominguez Golf Center also has two-story, covered tee-boxes for the driving range. The Goodyear Airship operations has a single-story office/maintenance building and

Ecology and Environment, Inc.

0191DTTGXX.a (Z.15) 05/22/98

Figure 2-1

SITE LOCATION MAP Victoria Golf Course Site

2. Site Description and History

another trailer used for offices. The Don Dominguez Apartments is a 65-unit, three-story building with a pool and covered parking area. The county park has a small, single-story office building.

2.3 Operational History

BKK
Ben K. Kazarian

DPR
Los Angeles County De-

partment of Parks and

Recreation

The VGC site was developed over the former Ben K. Kazarian (BKK) Carson Dump, a Class II and III cut-and-cover landfill that operated from 1948 to about 1959. The BKK Carson Dump accepted municipal, household, commercial, and hazardous wastes, including liquid and semi-liquid hazardous wastes. Substances that could be dumped on site were not regulated. There are no records of what was actually dumped; there are only records of what was permitted.

In a December 6, 1955 correspondence, the BKK Landfill was also identified as the Main Street Dump, and was located east of Main Street on the south side of the Dominguez Channel, an area which is now the VGC site. This land was owned by the Dominguez Land Company and was used as a public dump under lease to the BKK Corporation from 1953 until 1955.

The County of Los Angeles acquired approximately 209 acres of land (now designated as Victoria Regional Park) from the Dominguez Estates Company in 1957. The 200-acre VGC is owned by the County of Los Angeles Department of Parks and Recreation (DPR), and has been leased and operated by the Arnold Palmer Golf Management Company since 1957. A portion of the Victoria Regional Park consists of tennis courts, picnic area and park grounds; the remaining area is open space and ball fields, which are covered with grass.

The Dominguez Golf Course is owned by the Watson Land Company and the Dominguez Properties, and is leased and operated by the American Golf Corporation, C.W. Partners. The Dominguez Golf Center includes a restaurant/pro shop, golf course, practice range, and grounds-keeping area. The parking lot, walkways, and golf cart paths are primarily paved with asphalt. The remainder of the driveways, paths, and bases are made of concrete. The golf-playing areas are grass-covered.

Goodyear Airship Operations is owned and operated by the Goodyear Tire & Rubber Company of Akron, Ohio. Goodyear Airship Operations consists of an airship base landing area, two pre-fab buildings, an office-trailer, and a shed for storing

2. Site Description and History

hazardous materials. The trailer is used as an office. The majority of the landing base is covered with grass.

The Don Dominguez Apartments are on land owned by the Watson Land Company, and are operated by Price E. Evans of Orange County, California. The Don Dominguez apartments consist of an apartment building, carports, swimming pool, parking lot, and common areas. The majority of the parking area, roads, and walkways around the apartments are constructed with asphalt. Some of the common areas and landscape areas are covered with grass and soil, which contain some gas monitoring probes and equipment.

The Jaeil Farms (small family vegetable grower) is operated by Lee Jaeil of Hawthorne, California, on land owned by the Watson Land Company.

2.4 Regulatory Involvement

2.4.1 United States Environmental Protection Agency

SVOC semi-volatile organic compound VOC volatile organic compound The VGC site was entered into the CERCLIS database on June 1, 1981. The site is not listed in the Resource Conservation and Recovery Information System database as a hazardous waste generator or TSD facility. E & E conducted both a PA (dated August 1, 1984) and an SI (dated June 22, 1989) for the VGC site at the request of the EPA. BEI conducted a SIP of the VGC site, dated March 23, 1994, for the EPA.

2.4.2 California Environmental Protection Agency

2.4.2.1 Department of Toxic Substances Control

The DTSC (formerly known as the Department of Health Services, Toxic Substances Control Division) Property Evaluation Unit developed a report, "Summary—BKK, Carson," dated July 21, 1982. This report summarized waste characteristics; hydrogeology; landfill problems; and soil, air, and public health issues. This report recommended further analysis of the soil, groundwater, and air at the VGC site.

Under contract to the EPA, DTSC took on-site soil and groundwater samples, which were analyzed for low-level CLPAS semi-volatile and volatile organic compounds (SVOCs and VOCs) during December 1996 and January 1997.

2. Site Description and History

2.4.2.2 Regional Water Quality Control Board

The California Environmental Protection Agency, RWQCB, Los Angeles Region (formerly known as the California Regional Water Quality Control Board, Los Angeles Region) has had limited involvement with the site since it requested the submission of a groundwater Solid Waste Assessment Test (SWAT) proposal from BKK Corporation in 1988. To date, the RWQCB has not received the final groundwater SWAT report. The VGC site is not an active RWQCB site.

2.4.3 County of Los Angeles

Since 1980, the County of Los Angeles, Department of Public Works (DPW), has routinely tested for subsurface methane migration on site. Results of the tests are reported quarterly to the Los Angeles County Board of Supervisors and the City of Carson, under agreement with the City of Carson as a part of the Methane Gas Monitoring Carson Project - 301. Also, the County of Los Angeles, Department of Health Services, Solid Waste Management Program has monitored perimeter subsurface methane migration at the Victoria Golf Course and at the rest of the site.

The County of Los Angeles, DPW, and the Arnold Palmer Golf Management Company have proposed that an on-site environmental study be conducted at VGC. The purpose of the study would be to investigate alternatives for improving the irrigation system, determining the boundaries of the former BKK Carson Dump, re-landscaping the golf course, and researching the possible installation of a groundwater monitoring and gas collection and monitoring system. A proposal document still needs to be completed and submitted to the respective agencies for review, comment, and approval.

2.4.4 South Coast Air Quality Management District (SCAQMD)

Meredith/Boli & Associates, Inc. prepared an Air SWAT proposal for the Former Class II Landfill at the VGC site, and submitted it to the SCAQMD. The proposal, dated January 21, 1991, was prepared for the BKK Corporation of Torrance, California. This SWAT must be implemented and coordinated with the SCAQMD, which has urged the DPW and the Arnold Palmer Golf Management Company to involve the RWQCB, DTSC, and the EPA in their scope of work, compliance, and engineering activities.

RWQCB

Regional Water Quality Control Board

SWAT

Solid Waste Assessment Test

DPW

Department of Public Works

SCAQMD

South Coast Air Quality Management District

3

Summary of Investigative Efforts

3.1 Investigation by Potentially Responsible Party

SCS Engineers of Long Beach, California, conducted an air quality SWAT report, dated November 1988, for the County of Los Angeles at the VGC and Regional Park portion of the VGC site. On February 23, 1988, landfill gas test samples taken from a perimeter methane probe (probe number IV-5), located approximately on 192nd St., detected vinyl chloride at a concentration of 2,290 parts per billion (ppb) by volume, benzene at 1,413 ppb by volume, tetrachloroethene (PCE) at 11 ppb by volume, trichloroethene (TCE) at 136 ppb by volume, and methane at 44.7 percent. Another perimeter methane gas probe IV-6, also on 192nd St., detected benzene at 651 ppb by volume, PCE at 38 ppb by volume, TCE at 90 ppb by volume and methane at 12.7 percent. The SCS SWAT report was reviewed and did not contain any information regarding analysis methods or actual lab data.

The groundwater SWAT proposal, dated 1988, estimated that 3 million to 5 million tons of waste were deposited at the former landfill on site.

Monitoring of methane gas probes around the site revealed readings over 100 percent of the lower explosive limit. While methane is not a CERCLA hazardous substance, it is a common carrier gas for other hazardous compounds in landfills. A 1994 inspection of the VGC site, documented in a September 21, 1994, letter by the SCAQMD, showed readings of up to 10,000 parts per million (ppm) methane from an organic vapor analyzer calibrated with methane. These readings exceed the instantaneous limit of rule R-1150.2, which is 500 ppm. These readings also indicate that significant amounts of gas vapors were being generated at the landfill.

In 1995, soil samples were collected from the stockpiles at the Dominguez Golf Course. Analytical results indicated that lead was detected at concentrations up to 63 ppm. VOCs and

ppb parts per billion PCE tetrachloroethene

TCE trichloroethene

ppm parts per million

3. Summary of Investigative Efforts

SVOCs were not present above the laboratory detection limits. These results are in the Environmental Site Remediation, Dominguez Golf Course Report, prepared by Maness Environmental Services Inc., February 8, 1995.

3.2 Investigations by EPA

During December 1996 and January 1997, soil and groundwater samples were collected at the site by DTSC under contract to EPA, and analyzed for low-level CLPAS VOCs, metals, and SVOCs. DTSC subcontracted URS Consultants of San Francisco to facilitate field sampling work. The hydropunch sample collection system was used to sample soil (at 10 feet and 20 feet below ground surface [bgs]) and groundwater in the Bell-flower aquifer (at 75 feet bgs). The sampling activities were conducted in accordance with the Field Sample Plan dated March 25, 1997. No EPA sampling was done prior to this event. The analytical data were reviewed and validated by the EPA's Environmental Services Assistance Team (ESAT) contractor and subsequently reviewed by the ESAT Regional Project Officer within the EPA's Quality Assurance Office. The validated data is included in Appendix B.

Soil. Soil samples were taken at eight locations as shown in Figure 3-1 at 10 feet and 20 feet bgs. The presence of VOCs was not verified by the soil sampling. Some VOCs were detected; however, none were the same as in the groundwater samples and all were present in the method blanks used by the laboratory. Analytical results for VOCs in soil are shown in Table 3-1. Analytical results indicated that metals were detected in soil samples at elevated levels including chromium at concentrations up to 912 milligrams per kilogram (mg/kg), lead at concentrations up to 942 mg/kg. The highest concentrations for both chromium and lead were detected in sample SS-7-10. Analytical results for SVOCs indicated that several substances were detected including 4-methylphenol up to 5,900 micrograms per kilogram (μ g/kg) (SS-7-10); naphthalene up to 1,100 μ g/kg (SS-7-20); phenanthrene up to 600 μ g/kg (SS-7-10); and bis (2-ethylhexyl) phthalate at 750 μ g/kg (SS-7-10).

Groundwater. During the ESI conducted in January 1997, groundwater samples were taken in the Bellflower aquifer at 75 feet bgs by DTSC using a hydropunch sample collection system. Groundwater samples were taken at 10 locations upgradient, downgradient, and on site. VOCs, including vinyl chloride (a degradation product of various other VOCs detected in groundwater), PCE, and TCE, dichloroethane (DCA), dichloroethene (DCE), and chlorobenzene were found at

bgs
below ground surface

ESAT
EPA's Environmental
Services Assistance
Team

mg/kg

milligrams per kilogram

μ**g/kg** micrograms per kilogram

DCA dichloroethane

DCE dichloroethene

Ecology and Environment, Inc.

Table 3-1: Soil Sample Results, Victoria Golf Course (All results in $\mu q/kq$)

	(All result	s in μg/kg)	,					PAN: 0	191DTTGXX
					Analyte				
Sample No.	Acetone	Carbon disulfide	2-butanone	Benzene	4-Methyl-2- butanone	Toluene	Chloro- benzene	Ethyl- benzene	Xylene
SS-1-10 Duplicate 1	6	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-1-20 Duplicate 2	4	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-2-10	3	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	3	13
SS-2-20	43	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)
SS-3-10 background	26	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)
SS-3-20 background	. 9	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-4-10 background	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-4-20 background	4	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-5-10	5	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-5-20	8	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-6-10	ND (20)	ND (14)	7	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	2
SS-7-10	200	ND (12)	ND (12)	ND (12)	ND (12)	30	ND (12)	79	190
SS-7-20	34	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
SS-8-10	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-8-20	390	33	310	- 1 29°	88	82	-330	260	1,800
SS-9-10 Duplicate 2	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)
SS-10-10 Duplicate 1	3	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	(12)

TDD: 09-9705-013

ND = Not detected; sample quantitation limit in parentheses. μ g/kg = micrograms per kilogram.

Shaded = indicate results above background concentrations.

Bold = detected concentrations.

3. Summary of Investigative Efforts

μ**g/L** micrograms per liter downgradient and on-site of the sampling locations. Vinyl chloride was detected at a maximum concentration of 25 micrograms per liter ($\mu g/L$) (GW-1-1). VOCs were mainly detected at sampling locations 1, 9, and 10. Analytical results for VOCs in groundwater are shown in Table 3-2. Analytical results for SVOCs in groundwater indicated that only di-n-butylphthalate was detected above specified detection limits. Di-n-butylphthalate is a known laboratory contaminant. Analytical results for metals in groundwater show levels that do not appear to be elevated.

Table 3-2: Groundwater Sample Results, Victoria Golf Course (All results in μ g/kg)

	(All results in μ	g/kg)	•				PAN	: 0191DTTGXX
	19							
Sample No.	Vinyl Chloride	Acetone	1,1- Dichloroethane	1,2- Dichloroethene	1,2- Dichloroethane	Trichloroethene	Tetrachloro- ethene	Chlorobenzene
GW-1-1	25	11	8	48	78	: Day 13	ND (10)	
GW-2	ND (10)	2	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
GW-3-1 Background	ND (10)	ND (10)	ND (10)	3	ND (10)	ND (10)	ND (10)	ND (10)
GW-4-1 Background	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
GW-5-1 Duplicate 1	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
GW-8-1	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
GW-9	4	ND (10)	ND (10)	5	ND (10)	16	ND (10)	ND (10)
GW-10-1	23	3	ND (10)	72	4	27	4	13
GW-17-1	ND (10)	ND (10),	ND (10)	ND (10)	ND (10)	ND (10)	· ND (10)	ND (10)
GW-28-1 Duplicate 1	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)

TDD: 09-9705-013

 $\begin{array}{rcl} {\rm ND} & = & {\rm Not\ detected;\ sample\ quantitation\ limits\ in\ parentheses.} \\ {\mu g/kg} & = & {\rm micrograms\ per\ kilogram.} \\ {\rm Shaded} & = & {\rm indicate\ results\ above\ background\ concentrations.} \\ {\rm Bold} & = & {\rm detected\ concentrations.} \end{array}$

4.1 Sources of Contamination

The source of VOC contaminants is likely wastes deposited at the unlined, cut-and-cover Class II landfill. The SWAT report, used as a reference in the 1994 SI, estimates the waste volume at 5 million yards.

4.2 Groundwater Pathway

4.2.1 Hydrogeological Setting

The VGC lies is approximately 20 to 40 feet above sea level in the West Coast Basin of the coastal plain of Los Angeles County, California. The area is so named because all aquifers within it are confined by aquicludes or relatively impermeable layers of clay and silt over most of the area (1) (Bulletin 104, Plates 1 and 2). The net annual precipitation for the site vicinity is approximately 2.8 inches.

The following unsaturated soil and hydrogeologic units, in descending order, have been identified beneath the site: Upper Bellflower aquifer, Bellflower Sand aquifer, Lower Bellflower aquitard, Gage aquifer, Gage-Lynwood aquitard, Lynwood aquifer, Unnamed aquitard, and Silverado aquifer. The Lynwood and Silverado aquifers are used for drinking water, and the Gage is considered a secondary source of drinking water by the local water board (2). A description of each of these units is presented below.

The Upper Bellflower is relatively flat-lying and laterally continuous. It consists of interbedded, micaceous, olive-brown sand; silty sand; silt; and clay. The upper portion of this unit is unsaturated, while groundwater occurs in the bottom portion. Groundwater flow direction trends toward the southeast. The base of the Upper Bellflower ranges from approximately 47 feet bgs to 129 feet bgs. The Upper Bellflower is considered an aquifer for Hazard Ranking System (HRS) purposes because the RWQCB, Los Angeles Region, has determined that all groundwater units in the vicinity of the site are to be considered

HRS Hazard Ranking System

potential sources of drinking water pursuant to State Water Resources Control Board Resolution 88-63. In other words, groundwater is considered drinking water unless the total dissolved solids are more than 3,000 milligrams per liter, deliverability is less than 200 gallons per day, or pre-existing contamination cannot reasonably be treated.

The Bellflower Sand aquifer underlies the Upper Bellflower aquifer and consists of fine- to course-grained sand that generally coarsens with depth. The contact between the Bellflower Sand aquitard and the underlying Lower Bellflower aquitard is a distinct sand or silt that ranges from approximately 99 feet bgs to 146 feet bgs. The Bellflower Sand is considered an aquifer for HRS purposes pursuant to RWQCB Resolution 88-63. The Lower Bellflower underlies the Bellflower Sand and consists of silt of varying plasticity, as well as clayey sandy silt, fine-grained silty sand, and sand. The contact between the Lower Bellflower and the underlying Gage unit is a moderately well-defined silt to fine-grained sand that ranges from approximately 124 feet bgs to 171 feet bgs.

The Gage aquifer typically consists of fine-grained sand with a small amount of silt that grades to a silty sand near the base of the aquifer. The groundwater flow direction trends toward the east-southeast. The contact between the Gage and the underlying Gage-Lynwood stratum is gradational and is characterized by intermittent interbedding of silt and silty sand. The depth of this aquifer extends from approximately 100 feet bgs to 150 feet bgs near the site (Bulletin 104). The Gage is considered an aquifer for HRS purposes because the RWQCB, Los Angeles Region, has determined that all groundwater units in the vicinity of the VGC site are to be considered potential sources of drinking water pursuant to State Water Resources Control Board Resolution 88-63 (2).

The Gage-Lynwood aquitard underlies the Gage aquifer, and consists mostly of silt, sandy silt, and/or clayey silt interbedded with fine-grained silty sand.

The Lynwood aquifer underlies the Gage-Lynwood aquitard. The upper 20 feet of the Lynwood consists of fine- to coarse-grained sand. This sand is frequently underlain by as much as 8 feet of silt or clay of varying plasticity. Approximately 10 to 30 feet of well-graded sand, gravelly sand, and sandy gravel with some silty sand intervals underlie the top 20 to 30 feet of the Lynwood. The groundwater flow direction trends toward the southeast. The Lynwood reaches its maximum thickness of 425 feet bgs near the site (1).

The Lynwood is considered an aquifer for HRS purposes because the RWQCB, Los Angeles Region, has determined that all groundwater units near the VGC site are to be considered potential sources of drinking water, pursuant to State Water Resources Control Board Resolution 88-63.

The Unnamed aquitard stratum is approximately 100 feet thick, and underlies the Lynwood aquifer near the site (1). Cross-sections from DWR's Bulletin 104 indicate that the closest interconnecting point between the Lynwood and Silverado aquifers is approximately 5,000 feet south of the site.

The Silverado aquifer underlies the unnamed unit near the site and is composed primarily of fine- to coarse-grained sands and gravels. These highly permeable marine deposits range from 450 to over 1,000 feet bgs near the site (Bulletin 104). In contrast to the previously discussed aquifers, groundwater within the Silverado aquifer flows mainly to the east-northeast The vast majority of municipal groundwater wells are screened in, and draw water from, the Lynwood and Silverado aquifers.

Data are available within 2 miles of the VGC site to establish interconnections between the five strata that are considered aquifers for HRS purposes (i.e., upper Bellflower, Bellflower sand, Gage, Lynwood, and Silverado). As described in the Remedial Investigation for the Del Almo site (which is about 1.0 mile from the site), groundwater sampling data are available to document interconnections between the upper Bellflower sand, Gage, and Lynwood Aquifers. Most of the municipal groundwater wells in the West Coast Basin of the coastal plain of Los Angeles are screened in the Lynwood and Silverado aquifers. According to the California Department of Water Resources, Bulletin 104, the Lynwood and Silverado aquifers are in direct contact with each other within two miles of the site. The subsurface materials existing from the surface to the upper Bellflower consist of fine-grained sand, and silty sand.

4.2.2 Groundwater Targets

Groundwater targets are residents, students, and workers regularly served by wells that are within 4 miles of the site for the aquifer being evaluated (and appropriate overlying aquifers). The following four water companies operate drinking water wells within 4 miles of the site: the City of Torrance, the Southern California Water Company, the City of Compton, and the Dominguez Water Company. Table 6-1 shows groundwater purveyor information, including number of wells and the population served.

MWD. Metropolitan Water District The Southern California Water Company's southwest system is a blended drinking water supply system that serves approximately 150,000 people. The system is supplied with drinking water through 15 active groundwater wells, one of which is within 4 miles of the site. Twenty percent of the total water supply is imported from the Metropolitan Water District (MWD). (3)

Table 4-1 Water Purveyors and Wells Within 4 Miles of the Victoria Golf Course

Name	Total Population Served	Total Number of Wells and Intakes	Percent Groundwater
Dominguez Water Corporation	125,000	13	50
City of Compton	52,000	9	55
City of Torrance	95,000	3	10
Southern California Water Company Southwest System	150,000	16	80

The City of Torrance operates a blended drinking water system that serves approximately 95,000 people. The system is supplied with 10 percent of its drinking water through two active groundwater wells. The remaining 90 percent is imported from the MWD. The wells are within 4 miles of the site. (4)

The City of Compton operates a blended drinking water system that serves approximately 52,000 people. The system is supplied with drinking water through eight active groundwater wells that contribute 55 percent of the total water supply to the system. The remaining 45 percent is imported from the MWD. Two wells are within 4 miles of the site. (5, 6)

The Dominguez Water Corporation operates a blended drinking water supply system that serves approximately 125,000 people. The system is supplied with drinking water through 12 active groundwater wells that contribute 50 percent of the drinking water. The remaining 50 percent is surface water purchased from the MWD. Nine of the active drinking water wells are within 4 miles of the site. (6, 7, 8)

4.2.3 Groundwater Pathway Conclusion

Although VOCs, including vinyl chloride, 1,2-DCE, 1,2-DCA, and TCE, were detected in groundwater beneath the site at concentrations greater than three times background at approximately 75 feet bgs, the analytical results for soil samples collected at the site do not appear to be sufficient to document that the VOC contamination is attributable to the site. The VGC site (formerly the BKK Dump) was a Class II landfill and reportedly accepted an estimated 5 million cubic yards of waste. Information documented in the Del Almo HRS Documentation Record indicate that aquifers are interconnected within 2 miles of the site. Approximately 422,000 people are served by the drinking water wells within 4 miles of the site.

4.3 Surface Water Pathway

The DTSC hydropunch data (1997) confirmed that the site is capped with a significant amount (5 to 20 feet) of fill material. Most of the site is also covered with grass maintained for recreational purposes. Runoff from the site goes to the Dominguez storm channel. There are no surface water intakes within 15 miles downstream of the site.

4.4 Air and Soil Exposure Pathway

The site is capped with 5 to 20 feet of uncontaminated fill material. Most of the site surface is covered with vegetation. No air sampling was conducted during the 1997 DTSC ESI field activities. The VGC site is bordered in part by single family dwellings, and the Towne Avenue Elementary School.

Emergency Response Considerations

The National Contingency Plan [40 CFR 300.415 (b) (2)] authorizes the EPA to consider emergency response actions at sites that pose an imminent threat to human health or the environment. A referral to Region 9's ERS does not appear to be necessary because the site is covered with 5 to 20 feet of uncontaminated fill material, and because direct exposure to hazardous wastes from the site appears to be unlikely.

Summary

The Victoria Golf Course is located at 340 East 192nd Street in Carson, California. The site occupies 348 acres in a mixed recreational, commercial, residential, and industrial area. The site is a former landfill that is now closed and occupied by VGC, a portion of the Victoria Regional Park, Dominguez Golf Center, Goodyear Airship Operations, Jaeil Farms, and the 65-unit Don Dominguez Apartments.

The site was developed over the former Ben K. Kazarian Dump, a Class II and III cut-and-cover landfill that operated from 1948 to about 1959. The landfill accepted municipal, household, commercial, and hazardous wastes, including liquid, semi-liquid hazardous wastes. There are no records of what was actually dumped, only what was permitted.

Since 1980, the County of Los Angeles, Department of Public Works, has routinely tested for subsurface methane migration at the site. In addition, the County of Los Angeles, Department of Health Services, Solid Waste Management Program, Bureau of Environmental Protection, has monitored perimeter subsurface methane migration at the site. A contractor to the Ben K. Kazarian Corporation of Torrence prepared an air Solid Waste Assessment Test proposal in 1991, which was submitted to the South Coast Air Quality Management District. The Solid Waste Assessment Test has yet to be implemented.

The United States Environmental Protection Agency has been involved with investigating the site since 1984. In 1997, the United States Environmental Protection Agency directed the California Environmental Protection Agency, Department of Toxic Substances Control to conduct an expanded site inspection of the site. The Department of Toxic Substances Control conducted soil and groundwater sampling activities at the site in December 1996 and January 1997.

Results of Department of Toxic Substances Control sampling activities indicated that several volatile organic compounds are present in groundwater beneath the site. Analytical results for soil showed that 5 to 20 feet of uncontaminated fill material is

on the site. No air sampling was conducted on site during the December 1996 and January 1997 events. The Solid Waste Assessment Test proposal has yet to be implemented.

The following pertinent Hazard Ranking System factors are associated with the site:

- Groundwater is first encountered beneath the site at 75 feet below ground surface. Analytical results of groundwater sample show that volatile organic compounds, including vinyl chloride, 1,2-dichloroethene, 1,2-dichloroethane, and trichloroethene, were detected in groundwater beneath the site at concentrations greater than three times background.
- Analytical results of soil collected beneath the site are not sufficient to document attribution of contaminated groundwater to the site. At least two other landfills are within 0.25 mile from the site.
- The site (formerly the Ben K. Kazarian Dump) accepted an estimated 5 million cubic yards of waste.
- Approximately 422,000 people are served by the drinking water wells within 4 miles of the site.

References

- California Department of Water Resources, Southern District, Bulletin No. 104, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A, Ground Water Geology, 1961.
- 2. Hargis & Associates, Remedial Investigation for the Montrose Site, October 1992.
- 3. Cohen, Koby, Southern California Water System, Telephone conversation recorded on Contact Log by Tom Genolio and on Facsimile, Ecology and Environment, inc., June 6, 1998.
- 4. Scaper, Sandy, City of Torrance, Telephone conversation recorded in Contact Log by Tom Genolio and on Facsimile, Ecology and Environment, Inc., June 4, 1998.
- 5. Frison, Jerald, City of Compton, Telephone conversation recorded in Contact Log by Tom Genolio and on Facsimile, Ecology and Environment, Inc., June 4, 1998.
- 6. California Department of Health Services, Water Quality Monitoring Database, 1991, as reported by the EPA Region 9 GIS Center, January 1994.
- 7. Foth, John, Domingues Water Company, Telephone conversation recorded on Contact Log by Tom Genolio and on Facsimile, Ecology and Environment, Inc., June 4, 1998.
- 8. Ross, Cheryl, Central Basin Municipal Water District, Facsimile to Judy Sapp, Ecology and Environment, Inc., June 3, 1998.

Validated Data

SOUTH !

Lockheed Martin Environmental Services

Environmental Services Assistance Team, Region 9

301 Howard Street, Suite 970, San Francisco, CA 94105-2241

Phone: 415-278-0570 Fax: 415-278-0588

MEMORANDUM

TO:

Rachel Loftin

Site Assessment Manager

States Planning & Assessment Office, SFD-5

THROUGH:

Rose Fong Vose

ESAT Regional Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Jack Berges 9

Team Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68D60005 Work Assignment No.: 9-96-0-4 Technical Direction No.: 9604116

DATE:

February 21, 1997

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 validation of the following analytical data:

SITE:

Victoria Golf Course

SITE ACCOUNT NO.:

ZZ

CERCLIS ID NO.:

CAD980818926 25268 Memo #01

CASE NO.: SDG NO.:

YX354

LABORATORY: ANALYSIS:

Southwest Labs of Oklahoma, Inc. (SWOK)

Volatiles and Semivolatiles

SAMPLES:

4 Water and 3 Soil Samples (see Case Summary)

COLLECTION DATE:

January 8, 1997

REVIEWER:

Adriane Scheele, ESAT/Lockheed

The comments and qualifications presented in this report have been reviewed and approved by the EPA Work Assignment Manager (WAM) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Deirdre O'Leary (ESAT/Lockheed) at (415) 278-0585 or Rose Fong (QA Office/EPA) at (415) 744-1534.

Attachment '

cc: Ray Flores, TPO USEPA Region 6

TPO: [] FYI

[X] Attention

[]Action

SAMPLING ISSUES: [X] Yes [] No

Data Validation Report

25268 Memo #01 Case No.:

Victoria Golf Course

Laboratory: Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

February 21, 1997

I. Case Summary

SAMPLE INFORMATION:

VOA and BNA Samples: Water: YX327, YX334, YX335, and YX336

Soil: YX349, YX353, and YX354

Concentration and Matrix: Low Level Groundwater and Soil

Analysis: Volatiles and Semivolatiles
SOW: OLM03.2
Collection Date: January 8, 1997
Sample Receipt Date: January 10, 1997
Extraction Date: January 10, 1997

VOA Analysis Date: January 13, 16, 17, and 21, 1997

BNA Analysis Date: January 17, 1997

FIELD OC:

Trip Blanks (TB): None Field Blanks (FB): None

Equipment Blanks (EB): YX334 and YX335

Background Samples (BG): None Field Duplicates (D1): YX327 and YX336

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLK1: YX349, YX353, YX353MS, YX353MSD, and YX354

VBLK2: YX327, YX327MS, YX327MSD, and YX334

VBLK3: YX335 and YX336

VBLK4: VHBLK1

YX327, YX327MS, YX327MSD, YX335, and YX336 YX349, YX353, YX354, YX354DL, YX354MS, and SBLK1: SBLK2:

YX354MSD

SBLK3: YX334 and YX336RE

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifier Definitions for Organic Data

Review

TPO ACTION:

None.

TPO ATTENTION:

(1) Several results for volatile and semivolatile target analytes are qualified as nondetected and estimated (U,J) due to contamination in laboratory blanks. (2) Several results for volatile and semivolatile target analytes are estimated (J) due to calibration problems. Several results for semivolatile target analytes in one of the method blanks are estimated (J) due to a low internal standard response.

SAMPLING ISSUES:

A soil sample was not designated for quality control (QC) analysis on any of the chain of custody forms.

DL-Dilution; MS-Matrix Spike; MSD-Matrix Spike Duplicate; RE-Reextraction; VHBLK-Storage Blank 97-02-21-AS-02/25268M01.RPT

LOCKHEEL ARTIN

A temperature of 1°C was measured in the coolers containing all of the samples of this sample delivery group (SDG) which were received at the laboratory on January 10, 1997. This temperature does not meet the 4°C ± 2 °C sample preservation criterion.

The Tentatively Identified Compounds (TICs) found in the samples are reported on the Form 1Es, 1Fs, and alkane reports included in this report. No TICs were detected in the volatile fraction of samples YX327, YX334, and YX335 and the semivolatile fraction of sample YX334.

This report was prepared according to the USEPA Contract Laboratory Program (CLP) Statement of Work (SOW) for Organic Analysis, OLM03.2, and the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

II. <u>Validation Summary</u>

Acc	VOA eptable/	'Comment	BNA Acceptable/	Comment
HOLDING TIMES GC/MS TUNE/GC PERFORMANCE CALIBRATIONS FIELD QC LABORATORY BLANKS SURROGATES MATRIX SPIKE/DUPLICATES INTERNAL STANDARDS COMPOUND IDENTIFICATION COMPOUND QUANTITATION SYSTEM PERFORMANCE	[YES] [YES] [NO] [YES] [YES] [YES] [YES] [YES] [YES]	[] [D] [] [B] [] [G] [] [H] [A, I]	[YES] [YES] [NO] [NO] [NO] [YES] [YES] [NO] [YES] [YES] [YES]	[] [E] [C] [C] [G] [F] [H]

3703

N/A = Not Applicable

III. Validity and Comments

- A. The following results, denoted with an "L" qualifier, are estimated and flagged "J" in Table 1A.
 - All results below the contract required quantitation limits

Results below the contract required quantitation limits (CRQLs) are considered to be qualitatively acceptable, but quantitatively unreliable, due to the uncertainty in analytical precision near the limit of detection.

- B. The detected results for the following volatile target analytes are qualified as nondetected and estimated due to laboratory blank contamination. The results are flagged "U,J" in Table 1A.
 - Methylene chloride in samples YX349 and YX353
 - Acetone in samples YX327, YX349, and YX353

Methylene chloride was found in laboratory method blank VBLK4 and storage blank VHBLK1; and acetone was found in storage blank VHBLK1. (See Table 1A for concentrations.) The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased according to the blank qualification rules presented below.

LOCKHEELARTIN

No positive results are reported unless the concentration of the compound in the sample exceeds 10 times the amount in any associated blank for the common laboratory contaminants or 5 times the amount for other compounds. If the sample result is greater than the CRQL, the quantitation limit is raised to the sample result (U,J). If the sample result is less than the CRQL, the result is reported as nondetected (U,J) at the CRQL.

Although 1,2-dichloroethane and trichloroethene were found in equipment blanks YX334 and YX335 and chloroform was found in laboratory method blank VBLK2, no data are qualified because these analytes were not found in any of the samples.

A laboratory method blank is laboratory reagent water or baked sand for solid matrices analyzed with all reagents, surrogates, and internal standards and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during extraction and analysis.

A storage blank is laboratory reagent water stored in a vial in the same area as the field samples. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage prior to analysis.

- C. The detected results for the following semivolatile target analytes are qualified as nondetected and estimated due to laboratory and equipment blank contamination. The results are flagged "U,J" in Table 1A.
 - Di-n-butylphthalate in samples YX327, YX336, and YX354
 bis(2-Ethylhexyl)phthalate in samples YX327, YX336, and YX353

Di-n-butylphthalate and bis(2-ethylhexyl)phthalate were found in equipment blank YX335. Also, bis(2-ethylhexyl)phthalate was found in laboratory method blank SBLK2. (See Table 1A for concentrations.) The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased according to the blank qualification rules presented below.

No positive results are reported unless the concentration of the compound in the sample exceeds 10 times the amount in any associated blank for the common laboratory contaminants or 5 times the amount for other compounds. If the sample result is greater than the CRQL, the quantitation limit is raised to the sample result (\mathtt{U},\mathtt{J}) . If the sample result is less than the CRQL, the result is reported as nondetected (\mathtt{U},\mathtt{J}) at the CRQL.

Although diethylphthalate, di-n-butylphthalate, and bis(2-ethyl-hexyl)phthalate were found in laboratory method blank SBLK3, no data are qualified because the associated sample is equipment blank YX334.

An equipment blank is clean water that has been collected as a sample using decontaminated sampling equipment. The intent of an equipment blank is to monitor for contamination introduced by the sampling activity, although any laboratory introduced contamination will also be present.

LOCKHEELAIARTIN

- D. The quantitation limits for the following volatile target analyte are estimated due to a large percent difference (%D) in the continuing calibration. The results are flagged "J" in Table 1A.
 - Bromoform in samples YX335, YX336, and method blank VBLK3

A %D of 26.4 was observed for bromoform in the continuing calibration performed January 17, 1997. This value exceeds the ± 25.0 % QC advisory validation criterion.

The continuing calibration checks the instrument performance daily and produces the relative response factors (RRFs) for target analytes that are used for quantitation.

- E. The quantitation limits for the following semivolatile target analytes are estimated due to large percent differences (%Ds) in the continuing calibration. The results are flagged "J" in Table 1A.
 - 2,4-Dinitrophenol, 4-nitrophenol, 2,4-dinitrotoluene, and 4-nitroaniline in samples YX349, YX353, YX354, and method blank SBLK3

Percent differences of -31.2, -39.9, -25.4, and -28.6 were observed for 2,4-dinitrophenol, 4-nitrophenol, 2,4-dinitrotoluene, and 4-nitroaniline, respectively, in the continuing calibration performed January 17, 1997. These values exceed the $\pm 25.0\%$ QC advisory validation criterion.

- F. The quantitation limits for the following analytes are estimated due to a low internal standard area. The results are flagged "J" in Table 1A.
 - Di-n-octylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in method blank SBLK3

The internal standard area for method blank SBLK3 fell below the QC advisory criterion, as shown below.

<u>Sample</u>	<u>Internal Standard</u>	<u>Area</u>	OC Limits
SBLK3	Perylene-d ₁₂	430195	600658-2402634

The quantitation limits for the analytes listed above are considered quantitatively questionable. Since the results are nondetected, false negatives may exist.

Internal standards, introduced into every calibration standard, blank, sample, and QC sample, monitor changes in analyte response due to matrix effects and fluctuations in instrument sensitivity throughout the analytical sequence. Internal standards are used to quantitate the concentration of target analytes and surrogate standards.

G. The matrix spike and matrix spike duplicate results and relative percent differences (RPDs) for the analytes listed below in water QC samples YX327MS and YX327MSD and soil QC samples YX353MS, YX353MSD, YX354MS, and YX354MSD did not meet the criteria for accuracy and precision specified in the SOW. The recoveries and RPDs are presented below. The outliers are flagged with an asterisk (*).

LOCKHEEL ARTIN

<u>Analyte</u>	YX327MS %Recovery	YX327MSD %Recovery	RPD	QC li	mits <u>%Recovery</u>
Benzene N-Nitroso-di-n-	122	98	22*	11	76-127
<pre>propylamine 1,2,4-Trichloro-</pre>	38*	38*	0	38	41-116
benzene	40	38*	5	28	39-98
Acenaphthene	42*	40*	5	31	46-118
Analyte	YX353MS %Recovery	YX353MSD %Recovery	RPD	QC li	mits <u>%Recovery</u>
1,1-Dichloroethene Toluene	92 127	73 102	23* 22*	22 21	59-172 59-139
<u>Analyte</u>	YX354MS %Recovery	YX354MSD %Recovery	RPD	QC li	mits <u>%Recovery</u>
2,4-Dinitrotoluene Pyrene	86 76	95* 24*	10 104*	47 36	28-89 35-142

The results obtained may indicate poor laboratory technique, sample nonhomogeneity for soils, or matrix effects which may interfere with accurate analysis. Since the RPDs for 1,1-dichloroethene and toluene are only slightly outside the QC limits, no adverse effect on the quality of the data is expected. Although the recovery for 2,4-dinitrotoluene in QC sample YX354MSD is above the QC limit, this recovery does not indicate an analytical deficiency. The effect of the high RPDs for benzene and pyrene and low recoveries for N-nitroso-di-n-propylamine, 1,2,4-trichlorobenzene, acenaphthene, and pyrene on the quality of the data is not known.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement.

- H. Although not detected in any associated blanks, acetone, 2-butanone, and phthalates have been commonly found as contaminants in the field and in many laboratories. The user should note that the analytes listed below may be artifacts.
 - Acetone in sample YX354
 - 2-Butanone in samples YX349 and YX354
 - Dimethylphthalate, bis(2-ethylhexyl)phthalate, and di-n-octylphthalate in sample YX349
 - Diethylphthalate in samples YX327, YX336, and YX354
- I. The volatile fraction of sample YX354 was analyzed at a 5-fold dilution due to high levels of target analytes. The CRQLs listed for the volatile fraction of sample YX354 in Table 1A have been multiplied by the dilution factor.

ANALYTICAL RESULTS TABLE 1A

Case No.: 25268 Memo #01

Site: Victoria Golf Course

Lab.: Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

February 21, 1997

Analysis Type:

Low Level Groundwater

Samples for Volatiles

Concentration in $\mu g/L$

Station Location	GW-8	-1		GW-1	51		CW I	4 1		CW 1	7 1		3.5	. 15.	
Sample I.D.	YX32		1	YX33		D	GW-1			GW-1			Metho		ank
Date of Collection	1/8/97		1	1/8/97		ь	YX33		3	YX33		I	VBLI	\$2	
Volatile Compound	Result		Com	Result	,	Com	1/8/97 Result		Com	1/8/97				T	
Chloromethane	10 U		Com	10 U	+	Com			Com	Result	-	Com	Result		Com
Bromomethane	10 t	140000000		10 C	· Program		10 U	s occorr	100000000000000000000000000000000000000	10 U	boooco		10 U	Mildoone	4000000
Vinyl chloride	10 U		100000000	10 U			10 U 10 U			10 U	1		10 t		
Chloroethane	10 t	o d ocessore		10 C	dance.		10 U	10000000		10 U	900000		10 U	90 1 0000000	l
Methylene chloride	10 U		4000000000	10 U			10 U			10 U	1		10 t		
Acetone	17 U	skooooo	В	10 U	Same.		10 U	January 1885		10 U	400000		10 t	Selection of	
Carbon disulfide	10 U	openens.	0000000000	10 U	1		10 U			10 U			10 t		*
1,1-Dichloroethene	10 U	odnomen en		10 U	40000000		10 U	40000000		10 U	4000000		10 t	America	
1,1-Dichloroethane	10 U	1	0.0000000000000000000000000000000000000	10 U	7	2000000000000	10 U		100000000000	10 U		190000000000000000000000000000000000000	10 U		
1,2-Dichloroethene (total)	10 U	ı		10 U			10 U	40000000		10 U	4000000		10 t	ia kononno	
Chloroform	10 U	ı		10 U	1		10 U		\$0000000000	10 U		H00000000000	1 I		AB
1,2-Dichloroethane	10 U	ı		11		В	10		В	10 U	10000000		10 t	Acres 1	
2-Butanone	10 U	r		10 U			10 U	10000000	***********	10 U	1	5000000000	10 L		-
1,1,1-Trichloroethane	10 U			10 U			10 U	0000000		10 U	0000000		10 t	okooooo	
Carbon tetrachloride	10 U			10 U	,		10 U			10 U	0000000		10 L	1	(\$2000000000000000000000000000000000000
Bromodichloromethane	10 U			10 U			10 U	0000000		10 U			10 t	a kooooo a	
1,2-Dichloropropane	10 U			10 U			10 U	.,		10 U		**********	10 L		000000000
cis-1,3-Dichloropropene	10 U			10 U			10 U	1 0000000		10 U	0000000		10 t	a kananana	
Trichloroethene	10 U			6 L	J	AB	10		В	10 U	and a second	Construction (Construction Construction Cons	10 L	7	0000000000
Dibromochloromethane	10 U			10 U			10 U			10 U			10 U	aleman e	
1,1,2-Trichloroethane	10 U			10 U			10 U			10 U		aneuneseuseuseuseus	10 L	10000000	0000000000
Benzene	10 U		G	10 U			10 U			10 U			10 t	ıl .	
trans-1,3-Dichloropropene	10 U			10 U			10 U			10 U			10 U		
Bromoform	10 U			10 U			10 U	J	D	10 U	J	D	10 t	,	
4-Methyl-2-pentanone	10 U			10 U			10 U			10 U			10 U		en norden der
2-Hexanone	10 U			10 U			10 U			10 U			10 U	0.0000000	
Tetrachloroethene	10 U	larana da d		10 U			10 U			10 U			10 U		**********
1,1,2,2-Tetrachloroethane	10 U			10 U			10 U			10 U			10 U		
l'oluene l'acceptant de la company de la com	10 U			10 U			10 U			10 U			10 U	7	janassassas
Chlorobenzene	10 U			10 U			10 U			10 U			10 U	100000000	
Ethylbenzene	10 U			10 U			10 U			10 U			10 U	1	harananasa.
Styrene	10 U			10 U			10 U			10 U			10 U	three short	
Xylene (total)	10 U			10 U			10 U			10 U			10 U	4	
***************************************			,]							e e e e e e e e e e e e e e e e e e e	.,romadi	000000000000000000000000000000000000000			ww.00000000

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank
TB-Trip Blank, BG-Background Sample

ANALYTICAL RESULTS TABLE 1A

Case No.: 25268 Memo #01

Site: Victoria Golf Course

Lab.: Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date: February 21, 1997

Analysis Type:

Low Level Groundwater

Samples for Volatiles

Concentration in $\mu g/L$

Sample I.D.	Metho VBLK		ank	Metho VBLK	-	ank	Storag VHBL		ank	CRQL	,				
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Chloromethane Bromomethane	10 U	Incorporate.		10 U 10 U	decessor		10 U 10 U			10					
Vinyl chloride	10 U		1000000000000	10 U	1	160000000000	10 U			10 10					
Chloroethane	10 U			10 ປ	40000000		10 U	4000000		10					
Methylene chloride	10 U			2 L	J	AB	9 L		AB	10					pro-coccoccocc
Acetone	10 U			10 U			3 L	J	AB	10					
Carbon disulfide	10 U	Services.	20000000000	10 U	docesses	-01000000000	10 U	Jacobson.		10					
1,1-Dichloroethene	10 U			10 U	T		10 U			10					
1,1-Dichloroethane	10 U	becomes.		10 U	decease.	: 25000000000	10 U	0000000	12022000000	10	\$50000000		260000000000000000000000000000000000000		10000000000000
1,2-Dichloroethene (total) Chloroform	10 U			10 U	1		10 U	1		10					
1,2-Dichloroethane	10 U 10 U			10 U 10 U	decerees		10 U	0000000	200000000000000000000000000000000000000	10	10000000			0000000	10000000000
2-Butanone	10 U			10 U	1		10 U			10					
1,1,1-Trichloroethane	10 U			10 U	0000000		10 U 10 U			10					
Carbon tetrachloride	10 U	690000000	000000000000	10 U			10 U			10 10					
Bromodichloromethane	10 U			10 U	denoments.		10 U			10					
1,2-Dichloropropane	10 U	nere e e e e	eveningen er en er en er	10 U		***********	10 U	(5)(6)(6)(6)		10	8888888			0000000	868686666
cis-1,3-Dichloropropene	10 U			10 U	danas estas.		10 U			10					
Trichloroethene	10 U			10 U			10 U	racerosco		10	0000000		***************	10000000	9000000000
Dibromochloromethane	10 U			10 U			10 U			10					
1,1,2-Trichloroethane	10 U	personal	dagananan ar	10 U			! 10 U			10					
Benzene	10 U			10 U			10 U			10					
trans-1,3-Dichloropropene	10 U	5000000	00000000000	10 U	0000000	West to the second	10 U			10					
Bromoform	10 U	1	D	10 U			10 U			10					
4-Methyl-2-pentanone	10 U	300000	200000000000	10 U	200.0000	20200000000	10 U	6000000	0000000000	10	enterente.				ata de la constanción
2-Hexanone	10 U			10 U			10 U			10					
Tetrachloroethene	10 U			10 U	3333333	300000000000000000000000000000000000000	10 U	0000000	60000000000	10	5000050	100000000000000000000000000000000000000	600000000000000000000000000000000000000	00000000	1901000000000
1,1,2,2-Tetrachloroethane Toluene	10 U			10 U			10 U			10					
Chlorobenzene	10 U			10 U		***********	10 U		8888888888	10	200000	00000000000		100000000	5355555555
Ethylbenzene	10 U 10 U			10 U			10 U			10					
Styrene Styrene	10 U			10 U			10 U			10	0000000			333333	\$6666666
Xylene (total)	10 U		000000000	10 U			10 U			10					
11,700.0 (10.00.)	10 0			10 0			10 U			10					
	30000 000000 0000000000000000000000000	.ccee66110			404566			88888							
			.veces00000		000000000	er-seaschildeb		seessiis	sasaq88(\$8)		8193166				
					. unacritud	vanatus 600000	v.v.v.	2001000\$	200-000-000-000-00		00000000	occordinal i			14484145555

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank
TB-Trip Blank, BG-Background Sample

ANALYTICAL RESULTS

TABLE 1A

Analysis Type: Low Level Soil Samples

for Volatiles

Lab.:

Case No.: 25268 Memo #01 Victoria Golf Course

Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

Site:

February 21, 1997

Concentration in $\mu g/Kg$

Station Location	SS-6-1	0		SS-8-	10		SS-8-2	20		Metho	d Bl	ank			
Sample I.D.	YX349			YX35			YX354			VBLK		MIK.	CRQL		
Date of Collection	1/8/97			1/8/9			1/8/97			, , ,	••		ChtqL	,	
Volatile Compound	Result	Val	Com	Result		Com	Result		Com	Result	Val	Com	Result	Val	Com
Chloromethane	14 U			12 U			63 U	-	I	10 U	-		10	1	Com
Bromomethane	14 U			12 (J		63 U	4000000	1	10 U	distance.		10		
Vinyl chloride	14 U			12 U	J		63 U		I	10 U	1,,,,,,		10		
Chloroethane	14 U			12 T	j		63 U		1	10 U			10		
Methylene chloride	14 U	J	В	12 T	J J	В	63 U		I	10 U			10		
Acetone	20 U	J	В	12 1	J J	В	390		Н	10 U			10		
Carbon disulfide	14 U			12 T	J		33 L	J	Α	10 U			10		
1,1-Dichloroethene	14 U			12 U	Ĵ	G	63 U		1	10 U			10		
1,1-Dichloroethane	14 U			12 (J		63 U		I	10 U			10		
1,2-Dichloroethene (total)	14 U			12 T	J		63 U		1	10 U			10		
Chloroform	14 U			12 U	J		63 U		I	10 U			10		
1,2-Dichloroethane	14 U			12 U	J		63 U		1	10 U			10		
2-Butanone	7 L	J	AH	12 U	J		310		Н	10 U			10	İ	l
1,1,1-Trichloroethane	14 U			12 1	J		63 U		1	10 U			10		
Carbon tetrachloride	14 U	20000000	63000000000	12 T	44000000	00000000000	63 U	en en en en	I	10 U	decent of		10	ļ.,,,,,	
Bromodichloromethane	14 U			12 T			63 U		1	10 U			10		
1,2-Dichloropropane	14 U	222222	160000000000	12 U	di karana	+00000000000	63 U		I	10 U			10		
cis-1,3-Dichloropropene	14 U			12 t			63 U		1	10 U			10		
Trichloroethene	14 U	0000000	50505050500	12 U	o (0000000		63 U		I	10 U			10		
Dibromochloromethane	14 U	· · · · · · · ·		12 t			63 U		1	10 U			10		
1,1,2-Trichloroethane	14 U	0000000	20200000000	12 U	44000000	900000000000	63 U	0000000	I	10 U		8000000000	10		
Benzene	14 U			12 U			29 L	J	Α	10 U			10		
trans-1,3-Dichloropropene	14 U	06-040-0-04	60000000000	12 U	0.0000000	-00000000000	63 U		I	10 U			10		
Bromoform	14 U			12 U	or processors		63 U		1	10 U			10		
4-Methyl-2-pentanone	14 U	00000000	20000000000	12 U	a same	40000000000	88			10 U			10		
2-Hexanone	14 U			12 L	1		63 U		I	10 U			10		
Tetrachloroethene	14 U	2802840	300000000	12 U	9 0000000	400-000-000-000	63 U	enconso	I	10 U	Basassas		10		Innonvious
1,1,2,2-Tetrachloroethane	14 U			12 U	1		63 U		1	10 U			10		
Toluene	14 U	988999	9000000000	12 L	alassasa	G	82	inonane.	000000000000	10 U			10		bistonos
Chlorobenzene	14 U			12 U	1		330			10 U			10		
Ethylbenzene	14 U	SAME OF STREET	.00000000000	12 L	alemana.		260			10 U	20000000		10		
Styrene	14 U			12 U			63 U		1	10 U			10		
Xylene (total)	2 L	J	Α	12 U	J :40000000		1800			10 U			10		
	2020000000000000000000	2020000	9999999999		Messes	00000000000	000000000000000000000000000000000000000	anne e e e	,,,,,,,,,,,,,,,,,,						
Percent Solids	73 %			84 %			79 %			N/A			N/A		
			0200000000	H1000000000000000000000000000000000000			250000000000000000000000000000000000000	annerer.			Annen t	and the second			
	300000000000000000000000000000000000000		2020-2020-20	000000000000000000000000000000000000000		0000000000000									
													l.		

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs FB-Field Blank, EB-Equipment Blank TB-Trip Blank, BG-Background Sample TABLE 1A

Case No.: 25268 Memo #01

Site:

Victoria Golf Course

Lab.:

Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

February 21, 1997

Analysis Type: Low Level Groundwater Samples

for Semivolatiles

Concentration in $\mu g/L$

	-								·		· · ·		1	
Station Location	GW-8	-1	GW-1	5-1	GW-1	6-1	GW-17-	1	Matha	d Blank)	od Blank		
Sample I.D.	YX32	-	YX33	-	YX33		YX336	_	SBLK		SBLK		CRQI	r
Date of Collection	1/8/97		1/8/97		1/8/97		1/8/97	Di	SBLK	L	SDLN	S	CKQI	_
Semivolatile Compound	Result	Val Com	Result	Val Com	Result	Val Com		al Com	Result	Val Com	Result	Val Com	Result	Val Com
Phenol	10 U		10 U	 	10 U		10 U	ai com	· 10 U	V AI COIII	10 U		10	VaiCom
bis(2-Chloroethyl)ether	10 U		10 U	skoomodimmooocc	10 t	 bookstatelannannannin 	10 U		10 U		10 t	alacacca lastacacaca	10	
2-Chlorophenol	10 U		10 U	400000000000000000000000000000000000000	10 L	40.000.000.000000000	10 U		10 U		10 U		10	
1,3-Dichlorobenzene	10 U		10 L	skeepers kooreen van	10 t	 10000000 0000000000000 	10 U		10 U		10 t	aloccos loccoscos	10	
1,4-Dichlorobenzene	10 U		10 U	1	10 U	and the second	10 U	000000000000000000000000000000000000000	10 U		10 U	epocadao popadandosa	10	
1,2-Dichlorobenzene	10 U		10 U	l l	10 U	doppopodoppopopostal	10 U		10 U		10 L	od 2000000 2000000000000	10	
2-Methylphenol	10 U		10 U		10 U	and the second	10 U	200000000000000000000000000000000000000	. 10 U	***************	10 L	9	10	
2,2'-oxybis(1-Chloropropane)	10 U		10 U		10 U		10 U		10 U		10 L	1000000 000000000	10	
4-Methylphenol	10 U		10 U		10 U		10 U		10 U		- 10 U	Accessor Conservation	10	
N-Nitroso-di-n-propylamine	U 01	G	10 U		10 U		10 U		10 U		10 L	de como la companya d	10	
Hexachloroethane	10 U		10 U		10 U		10 U		10 U		10 U	1	10	3 10000000 10000000000
Nitrobenzene	10 U		10 U		10 U		10 U		10 U		10 U		10	
Isophorone	10 U		10 U		10 U		0.5 L .	J A	10 U		10 U		10 .	
2-Nitrophenol	10 U		10 U		10 U		10 U		10 U		10 U		10	
2,4-Dimethylphenol	10 U		10 U		10 U		10 U		10 U		10 U		10	
bis(2-Chloroethoxy)methane	10 U		10 U		10 U		10 U		10 U		10 U		10	
2,4-Dichlorophenol	10 U		10 U		10 U		10 U		10 U		10 U		10	
1,2,4-Trichlorobenzene	10 U	G	10 U		10 U		10 U		10 U		10 U		10	
Naphthalene	10 U		10 U		10 U		10 U		10 U		10 U		10	
4-Chloroaniline	10 U		10 U		10 U		10 U		10 U		10 U		10	
Hexachlorobutadiene	10 U		10 U		10 U		10 U		10 U		10 U		10	
4-Chloro-3-methylphenol	10 U		10 U		10 U		0.6 L	I A	10 U		10 U		10	
2-Methylnaphthalene	10 U		10 U		10 U	0000000000000000000000	10 U		10 U		10 U		10	
Hexachlorocyclopentadiene	10 U		10 U		10 U		10 U		10 U		10 U		10	
2,4,6-Trichlorophenol	10 U		10 U	535536347000000000	10 U	1000000 1000000000000000000000000000000	10 U	.000 0000000000000000000000000000000000	10 U	800000	10 U		10	
2,4,5-Trichlorophenol	25 U		25 U		25 U		25 U		25 U		25 U		25	
2-Chloronaphthalene	10 U		10 U		10 U		10 U		10 U		10 U		10	
2-Nitroaniline	25 U		25 U		25 U		25 U		25 U		25 U		25	
Dimethylphthalate	10 U		10 U		10 U		10 U	2001000000000	10 U	2000-0000000000	10 U		10	
Acenaphthylene	10 U		10 U		10 U		10 U		10 U		10 U		10	
2,6-Dinitrotoluene	10 U		10 U		10 U		、10 U		10 U		10 U		10	contate contrare and
3-Nitroaniline	25 U		25 U		25 U		25 U		25 U		25 U		25	

Station Location	GW-8-	-1	GW-15-1		GW-1	6-1	GW-1	7-1	Metho	d Blank	Meth	od Blank		
Sample I.D.	YX327	7 D1	YX334 E	В	YX33	5 EB	YX336	-	SBLK		SBL		CRQ	τ.
Date of Collection	1/8/97		1/8/97		1/8/97	7 · .	1/8/97			-	552.		J. Care	_
Semivolatile Compound	Result	Val Com	Result Va	l Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Con	Result	Val Con
Acenaphthene	10 U	G	10 U		10 L		10 U		10 U		10 U		10	1 3
2,4-Dinitrophenol	25 U		25 U		25 L	1	25 U		25 U		25 U	ookooooodbaaaaaa	25	
4-Nitrophenol	25 U		25 U		25 L	J	25 U		25 U		25 U		25	
Dibenzofuran	10 U		10 U		10 C	ń	10 U		10 U		10 T	90 9999999 000000	10	
2,4-Dinitrotoluene	10 U		10 U		10 U	J	10 U		10 U		10 T		10	
Diethylphthalate	1 L	J AH	10 U		10 L	ri i	I L	J AH	10 U		0,6 I	ed socialistica de la constanta	00-000000000000000000000000000000000000	
4-Chlorophenyl phenyl ether	10 U		10 U		10 U	J	10 U		10 U	***************	10 U		10	**********
Fluorene	10 U		10 U		10 L	rl l	10 U		10 U		10 U	or become advances on a	10	
4-Nitroaniline	25 U		25 U		25 L	, in the second	25 U	D0000000000000000000000000000000000000	25 U	10000001 (00000000000	25 U		25	
4,6-Dinitro-2-methylphenol	25 U		25 U		25 L	i l	25 U		25 U		25 U	ji i	25	
N-Nitrosodiphenylamine	10 U		10 U		10 U		10 U	annann teanneanse for	10 U		10 T		10	
4-Bromophenyl phenyl ether	10 U		10 U		10 U	n l	10 U		10 U		10 U	sahaaaaaad saacaaaaa	10	
Hexachlorobenzene	10 U		10 U		10 U		10 U		10 U		10 U		10	
Pentachlorophenol	25 U		25 U		25 U		25 U		25 U		25 U		25	
Phenanthrene	10 U		10 U		10 U		10 U		10 U	*******	10 U]	10	
Anthracene	10 U		10 U		10 U		10 U		10 U		10 T	,	10	
Carbazole	10 U		10 U		10 U		10 U		10 U		10 L	ıl l	10	
Di-n-butylphthalate	10 U	J C	10 U		0.6 L	J AC	10 U	J C	10 U		1 L	J AC	10	
Fluoranthene	10 U		10 U		10 U		10 U		10 U		10 L	J	10	
Pyrene	10 U		10 U		10 U		10 U		10 U		10 C		10	
Butylbenzylphthalate	10 U		10 U		10 U		10 U		10 U		10 U	ı	10	
3,3'-Dichlorobenzidine	10 U		10 U		10 U		10 U		10 U		10 U	d l	10	
Benzo(a)anthracene	10 U		10 U		10 U		10 U		10 U		10 U	r I	10	
Chrysene	10 U		10 U		10 U		10 U		10 U		10 L	ıl l	10	
ois(2-Ethylhexyl)phthalate	10 U	J C	10 U		1 L	J AC	10 U	J C	10 U		1 L	J AC	10	
Di-n-octylphthalate	10 U		10 U		10 U		10 U		10 U		10 U	J F	10	
Benzo(b)fluoranthene	10 U		10 U		10 U		10 U		10 U		10 U	J F	10	·
Benzo(k)fluoranthene	10 U		10 U		10 U		10 U		10 U		10 U	J F	10	
Benzo(a)pyrene	10 U		10 U		10 U		10 U		10 U		· 10 U	J F	10	
ndeno(1,2,3-cd)pyrene	10 U		10 U		10 U		10 U		10 U		10 U	J F	10	
Dibenz(a,h)anthracene	10 U		10 U		10 U		10 U		10 U		10 U	J F	10	-
Benzo(g,h,i)perylene	10 U		10 U		10 U		10 U		10 U		10 U	JF	10	

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1A

Case No.: 25268 Memo #01

Site:

Victoria Golf Course

Lab.:

Southwest Labs of Oklahoma, Inc. (SWOK)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

February 21, 1997

Analysis Type: Low Level Soil Samples

for Semivolatiles

Concentration in $\mu g/Kg$

								-												
Station Location	SS-6-1	0	s	S-8-10		SS-8-2	20		Metho	d Blank										
Sample I.D.	YX349	9	7	X353		YX35	4		SBLK	2 .		CRQL								
Date of Collection	1/8/97		1	/8/97		1/8/97														
Semivolatile Compound	Result	Val C	m Resu	t Va	l Com	Result	Val	Com	Result	Val Co	m	Result	Val	Com	Result	Val	Com	Result	Va	al Com
Phenol	450 U		3	90 U		420 L	ı		330 U			330								
bis(2-Chloroethyl)ether	450 U		3	90 U		420 L	J		330 U			330								
2-Chlorophenol	450 U		3	90 U		420 L	J		330 U			330								
1,3-Dichlorobenzene	450 U		3	90 U		420 L	J		330 U			330								
1,4-Dichlorobenzene	61 L	J	A 3	90 U		44 L	J	A	330 U			330								
1,2-Dichlorobenzene	450 U		3	90 U		34 L	J	A	330 U			330								
2-Methylphenol	450 U		3	90 U		420 U	J		330 U			330								
2,2'-oxybis(1-Chloropropane)	450 U		3	90 U		420 U	ļ		330 U			330								
4-Methylphenol	450 U		3	90 U		240 L	J	Α	330 U			330								
N-Nitroso-di-n-propylamine	450 U		3	90 U		420 U			330 U			330								
Hexachloroethane	450 U		3	90 U		420 U			330 U			330								
Nitrobenzene	450 U		3	90 U		420 U			330 U			330								
Isophorone	450 U		3	90 U		420 U			. 330 U			330								
2-Nitrophenol	450 U		3	0 U		420 U			330 U			330								
2,4-Dimethylphenol	450 U		. 3	90 U		420 U			330 U			330								
bis(2-Chloroethoxy)methane	450 U		3	10 U		420 U			330 U			330								
2,4-Dichlorophenol	450 U		31	90 U		420 U			330 U			330								
1,2,4-Trichlorobenzene	450 U		31	00 U		420 U			330 U			330								
Naphthalene	200 L	J	3	90 U		190 L	J	Α	330 U			330								
4-Chloroaniline	450 U		3	00 U		420 U			330 U			330								
Hexachlorobutadiene	450 U		3'	90 U		420 U			330 U			330								
4-Chloro-3-methylphenol	450 U		3	00 U		420 U			330 U			330								
2-Methylnaphthalene	110 L	J	3	90 U		130 L	J	Α	330 U			330								
Hexachlorocyclopentadiene	450 U		3	00 U		420 U			330 U			330								
2,4,6-Trichlorophenol	450 U		3:	90 U		420 U			330 U			330				1				
2,4,5-Trichlorophenol	1100 U		9	00 U		1000 U			830 U			830								
2-Chloronaphthalene	24 L	J	3	90 U		420 U			330 U			330			,					
2-Nitroaniline	1100 U		9:	00 U		1000 U			830 U			830								1
Dimethylphthalate	46 L	J A	Н 39	0 U		420 U			330 U	, annua Parista		330								
Acenaphthylene	450 U		39	00 U		420 U			330 U			330								1
2,6-Dinitrotoluene	450 U		39	00 U		420 U			330 U			330				1				
3-Nitroaniline	1100 U		ecan kontotatatan	เกษ		1000 U			830 U			830								

						-															
Station Location	SS-6-	10		SS-8-1	10		SS-8-	20		Method	d Bl	ank									
Sample I.D.	YX34	9		YX35	3		YX35	4		SBLK2	2		CRQI				•				•
Date of Collection	1/8/97			1/8/97			1/8/97	7.													
Semivolatile Compound	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	l Com	Result	Va	al Com
Acenaphthene	450 U	J		390 ປ			120 I	J	Α	330 U			330								
2,4-Dinitrophenol	1100 U	J	E	990 U	J	Е	1000 L	J J	Е	830 U			830								
4-Nitrophenol	1100 U	J	E	990 U	J.	E	1000 L	J	Е	830 U			830								
Dibenzofuran	450 U	i i		390 U			54 I	J	Α	330 U			330								
2,4-Dinitrotoluene	450 U	ı ı	E	390 U	J	E	420 L	J J	EG	330 U			330								
Diethylphthalate	450 U	Ţ		390 U			35 L	J	AH	330 U			330								
4-Chlorophenyl phenyl ether	450 U	J		390 U			420 L	J		330 U			330								
Fluorene	49 L	J	Α	390 U			150 L	J	A	330 U			330								
4-Nitroaniline	1100 U	J	E	990 U	J	E	1000 U	J	E	830 U			830			***************************************					4
4,6-Dinitro-2-methylphenol	1100 U			990 U			1000 L	ī.		830 U			830								
N-Nitrosodiphenylamine	450 U			390 U	ļ,		420 U	J		330 U			330								
4-Bromophenyl phenyl ether	450 U			390 U			420 U	f		330 U			330								
Hexachlorobenzene	450 U			390 U			420 U	ı		330 U			330								
Pentachlorophenol	1100 U			990 U			1000 U			830 U			830								
Phenanthrene	120 L	J	A	390 U	en en en en en		1400			330 U			330								
Anthracene	450 U			390 U			550			330 U			330								
Carbazole	450 U			390 U			410 L	J	A	330 U			330								
Di-n-butylphthalate	2000			390 U			420 U	J	С	330 U			330								
Fluoranthene	46 L	J	A	390 U	A. C.		2100			330 U			330								
Pyrene	42 L	J	A	390 U			1300		G	330 U			330								
Butylbenzylphthalate	450 U	10000000	100000000000000000000000000000000000000	390 U		.00000000000	420 U			330 U			330								
3,3'-Dichlorobenzidine	450 U			390 U			420 U			330 U			330								
Benzo(a)anthracene	450 U	0000000	***********	390 U	0000000		980			330 U			330			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Chrysene	40 L	J	Α	390 U			1000			330 U			330								
bis(2-Ethylhexyl)phthalate	2000		H	390 U	J	С	16000			27 L	J	AC	330								
Di-n-octylphthalate	43 L	J	AH	390 U			420 U			330 U			330								
Benzo(b)fluoranthene	450 U		4040404044	390 U	5500000		670			330 U			330								
Benzo(k)fluoranthene	450 U			390 U			630			330 U			330								1
Benzo(a)pyrene	450 U	2222000	-0.000000000000000000000000000000000000	390 U	0000000		830			330 U			330			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Indeno(1,2,3-cd)pyrene	450 U			390 U			420			330 U			330								1
Dibenz(a,h)anthracene	450 U	000000		390 U			250 L	J	A	330 U			330]				
Benzo(g,h,i)perylene	450 U			390 U			440			330 U			330								
Percent Solids	73 %			84 %			79 %		ľ	N/A			N/A		Ī					1	

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR ORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared according to the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- Indicates results which fall below the Contract Required Quantitation Limit. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX336	

Lab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK Case No.: 25268 SAS No.: SDG No.: YX327

Matrix: (soil/water) WATER

Lab Sample ID: 28122.04

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: C23399.D

Level: (low/med) LOW

Date Received: 01/10/97

% Moisture: not dec.

Date Analyzed: 01/17/97

GC Column: DB-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 110-43-0 3. 4.	UNKNOWN 2-Heptanone	13.621	28 68	==== N
5. 6. 7. 8.				
10. 11. 12.				
14. 15. 16.				
18. 19. 20.				
22. 23. 24.				
26. 27. 28.				
30.				

FORM I VOA-TIC

NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX349

Lab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.05

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: L24127.D

Level: (low/med) LOW

Date Received: 01/10/97

% Moisture: not dec. 27

Date Analyzed: 01/13/97

GC Column:DB-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

Number TICs found: 15 13

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	_======================================	=====
2.	UNKNOWN UNKNOWN	12.359 14.296	10	JB
3.	UNKNOWN	15.002	9 12	J J
$\frac{4}{2}$.	UNKNOWN	15.089	28	J
5.	UNKNOWN	15.389	7	טעעעע
7.	UNKNOWN UNKNOWN	15.563	20	J
7 . 8 .	Benzene, -dichloro-	15.814	26	J
9.	UNKNOWN	15.950 16.095	8	Ų T
10.	Naphthalene, decahydro-	16.336	16	J
11.	UNKNOWN	16.520	12	Ĵ
12. ————————————————————————————————————	Benzene, ethyl-dimethyl-	16.733	7	J
14.	UNKNOWN TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO	16.936	23	JB
15.	UNKNOWN CÝCLOALKANE	17.140 18.273	12	J
16		10.2/3	. /	Ū
17.				
18.				
20.				
21.				
22.				
23.				
24.				
25. 26.				
27.				
28.				
29.				
30.				

1,13 found in method blanks

FORM I VOA-TIC

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK

Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Level: (low/med) LOW

Lab Sample ID: 28122.06

Sample wt/vol:

5.0 (g/mL) G Lab File ID: L24128.D

% Moisture: not dec. 16

Date Received: 01/10/97

Date Analyzed: 01/13/97

GC Column:DB-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found: 3 !

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	NKNOWN	== = = = = : 		==== J
	NKNOWN	15.856	7	0
-	NKNOWN	16.927		
4.		10.52/		Ĺ
5.				
6.				
7.				
8.				
9.				
.0.				
.1.				
.2.				
.3.				
.4.			· · · · · · · · · · · · · · · · · · ·	
.5.		_ -	• • • • • • • • • • • • • • • • • • • •	
.6.		_ -		
.7.				
.8.		_ -		
.9.		_ -		
20.			· · · · · · · · · · · · · · · · · · ·	
31.		- -		
12.		- -		
3				
4.		_ -		
5.				
6		- -		
7		_ -		
8.		_ -		
9. — —		_		
ō:				
·				

1,3 found in method blanks

FORM I VOA-TIC

NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX354

Lab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.07

Sample wt/vol: 1.0 (g/mL) G

Lab File ID: L24134.D

Level: (low/med) LOW

Date Received: 01/10/97

% Moisture: not dec. 21

Date Analyzed: 01/13/97

GC Column:DB-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 30 28

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

			T	T	
CAS NUMBI	ER	COMPOUND NAME	RT	EST. CONC.	Q
1.		UNKNOWN CYCLOALKANE	10.590	_======================================	=====
2.		Cyclohexane, trimethyl-		130	J
3.		UNKNOWN HYDROCARBON	12.805	120	J
4.		UNKNOWN	13.103	130	J
5.		UNKNOWN	13.267	53	J
6.		UNKNOWN CYCLOALKANE	13.827	92	J
7.		INKNOWN CYCLOALKANE	14.011	. 140	J J
8.		UNKNOWN HYDROCARBON	14.253	710	J
9.		UNKNOWN	14.359	780	J
10.		UNKNOWN	14.475	760	J
11.		Benzene, ethyl-methyl-	15.056	1400	J
12.		UNKNOWN	15.163	2200	. J
		Benzene, ethyl-methyl-	15.356	640	J
13.		Benzene, trimethyl-	15.550	2600	J
14.		UNKNOWN	15.734	590	J J
15.		UNKNOWN ALKYL BENZENE	15.889	2000	J
16.	•	Benzene, trimethyl-	16.006	1800	J
17.		UNKNOWN ALKYL BENZENE	16.238	480	J
18.		UNKNOWN	16.316	880	J
19. 1120-2	21-4	Undecane	16.461	1000	NJ
20.		UNKNOWN ALKYL BENZENE	16.626	860	J
21.		UNKNOWN ALKYL BENZENE	16.830	380	J
-22.		UNKNOWN	16.917	800	JB
23.		UNKNOWN	17.102	380	J
24.		UNKNOWN ALKYL BENZENE	17.189	440	J
25.		UNKNOWN	17.461	230	J
26.		UNKNOWN	17.635	380	J
27.		UNKNOWN	17.833	120	J
28.		UNKNOWN	17.956		
29.		UNKNOWN		160	J
$\begin{vmatrix} -30 & 91 - 20 \end{vmatrix}$		Naphthalene	18.082	150	J
30. 31 20.	7	Naphtenatene	18.382	100	NJ
					·

22 found in method blanks

30 semivolatile target analyte. FORM I VOA-TIC

SEMIVOLATILE OR NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				•	YX327
ab	Name:	SWL-TULSA	Contract:	68-D5-0021	
					l

Lab Code: SWOK Case No.: 25268 SAS No.: SDG No.: YX327

Matrix: (soil/water) WATER Lab Sample ID: 28122.01

Sample wt/vol: 1000 (g/mL) ML Lab File ID: M4466.D

Level: (low/med) LOW Date Received: 01/10/97

% Moisture: ____ decanted: (Y/N)___ Date Extracted: 01/10/97

Concentrated Extract Volume: 1000(uL) Date Analyzed: 01/17/97

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.6

Number TICs found: 17 8

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN ORGANIC ACID	3.585	3	
2.	UNKNOWN	3.990		<u></u>
3.	UNKNOWN	4.592	280	
4.	UNKNOWN	4.721	200	Jì
5. 110-43-0	2-Heptanone	4.859	42	N.
6. 111-76-2	Ethanol, 2-butoxy-	5.057	170	No.
7.	UNKNOWN	5.235	170	JI
8.	UNKNOWN	5.610	5	JI
9.	UNKNOWN	5.670	4	
0. 111-90-0	Ethanol, 2-(2-ethoxyethoxy)-	6.431	. 2	37.
1.	UNKNOWN 2 (2 echoxyechoxy)	6.767	4 2	N
2. 112-07-2	2-Butoxyethyl acetate	7.656	110	37.
3. 95-16-9	Benzothiazole	9.633		NJ
4. 143-07-7	Dodecanoic acid	12.752	2	NJ
5	UNKNOWN		3	ŊJ
6.	UNKNOWN	15.573 15.892	3	
7.	UNKNOWN		4	J
8.	OMMOWIA	16.031	8	J
9.				
ő:	_			
1.				
2.	-			
3.				
4.				
5.				
6.				_
7				
8				
9.				
0.				

¹⁰ unknown

laboratory artifact (phthouate) 15

^{7,8} found in SBLKI

elute before phenol (1st SVOA target analyte)

ICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

ab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK

Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) WATER

Lab Sample ID: 28122.03

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: M4470.D

Level:

Date Received: 01/10/97

(low/med) LOW

% Moisture: ____ decanted: (Y/N)___

Date Extracted:01/10/97

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 01/17/97

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

рH: 7.5

Number TICs found: 2

CONCENTRATION UNITS: \cdot (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ====
1.	UNKNOWN	5.233	5-	1
2.	UNKNOWN ORGANIC ACID	13.169	2	
3.	Julianoviii Greating Meth	13.109		'
4.				ļ
5.				l ———
6.	_ <u> </u>			
7.				
8.				
9.				
<u></u>				
1.			· · · · · · · · · · · · · · · · · · ·	
2				
J•				
5				<u> </u>
6				
7.				
ó • <u> </u>				
8				
J•				
U •	· ·			
⊥ •				
2.				
3. .				
± •				
5.				
ś •				
6.				
7.				
5 •				
9.				
0.				
				

I found in SBLKI & elutes before phenol (5+ SVOA target analyte)

ane Report for Sample :

35

Page: 1

Data file : m4470.d

Matrix: WATER

CAS #

Compound

ד. א

Estimated Conc.

7-60-21-4 Pentane, 3-methylene	1 79.9	2 17
2 C17 TO T Dentality S meeting tene		2-1/
2 617-78-7 Pentane, 3 ethy1-	5.617	5.51
3-4923-77-7 Cyclohexane, 1-ethyl-2-methyl-, cis-un	known 5.677	4.10

Concentration Units: Water: UG/L Soil: UG/KG

1-2 found in SBLKI 1 elutes before phenol (15+ SVOA target analyte)

ICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

YX336

Tab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK

Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) WATER

Lab Sample ID: 28122.04

Sample wt/vol: 1000

(g/mL) ML

Lab File ID: M4471.D

Level:

(low/med)

Date Received: 01/10/97

% Moisture: ____ decanted: (Y/N)___

LOW

Date Extracted: 01/10/97

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 01/17/97

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 6.2

Number TICs found: 26 5

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

		·		, ,
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 68-12-2	UNKNOWN ORGANIC ACID Formamide, N,N-dimethyl-	3.624 3.713		J NJ
-3. -4.	UNKNOWN ORGANIC ACID UNKNOWN	3.990 4.602		J
6. 110-43-0	-Acetoxy - propanol unknown 2-Heptanone	4.730	6	J NJ
7. 111-76-2 -8.	Ethanol, 2-butoxy- UNKNOWN	5.077 5.235	230	NJ JB
9. -10. 11.	UNKNOWN - methyl-	5.363 5.620	2 5	JA J
11. 12. 13.	Ethanol, -[-(-ethoxyethoxy)e UNKNOWN ORGANIC ACID	6.777	4 3 2	J J
14. 14. 15. 112-07-2	UNKNOWN -Heptanone, -methyl-	6.886 7.143	3	J
16. 1119-40-0 17. 65-85-0	2-Butoxyethyl acetate Pentanedioic acid, dimethyles Benzoic Acid		160 2	NJ NJ
18. 19. 119-36-8	UNKNOWN ORGANIC ACID Methyl Salicylate	8.616 8.676	3 2 2	NJ J
20. 95-16-9	Benzothiazole Phthalic anhydride unknown	9.210 9.636	3	NJ NJ
22. 143-07-7	Dodecanoic acid Benzene, -methyl(-methylet-	10.645 12.767 12.866	6	NJ NJ J
24. 85-44-9	Phthalic anhydride UNKNOWN	15.581 15.900	3	NJ J
26. 27.	UNKNOWN	16.040	11	J
28.				
30				

laboratory artifact (phthalate) 24

8,10 found in SBLKI

1-9 elute before phenol (1st SVOA target analyte) FORM I SV-TIC

ane Report for Sample :

3

Page: 1

Data file : m4471.d

Matrix : WATER

CAS #	Compound	R.T.	Estimated Conc.
112-36-7 2 291-64-5 3 541-02-6 4 56762-00-6	Cyclohexane, 1,3-dimethyl- unknown Ethane, 1,1'-oxybis[2-ethoxy-] Cycloheptane- unknown Cyclopentasiloxane, decamethyl- Pentane, 2,2'-oxybis- unknown Nonadecane- unknown alkane	5.679 6.440 6.796 8.448 8.745 22.06	3.70 3.57 2.84 2.14 2.31 2.03

Concentration Units: Water: UG/L Soil: UG/KG

3 laboratory artifact (column bleed) & found in SBLKI

AS, ESAT

1F ICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Tab Name: SWL-TULSA

Contract: 68-D5-0021

YX349

Lab Code: SWOK

Case No.: 25268

SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.05

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

M4493.D

Level:

(low/med) LOW

Date Received: 01/10/97

% Moisture: 27

decanted: (Y/N) N

Date Extracted: 01/10/97

Concentrated Extract Volume:

500(uL)

Date Analyzed: 01/17/97

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 7.9

Number TICs found: 33 30

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RŤ	EST. CONC.	Q
		======		=====
1.	UNKNOWN	3.378	1000	
2. 123-42-2	2-Pentanone, 4-hydroxy-4-met	4 288	6900	NJAB
3. 489 - 3 9 - 4	H-Cyclopropfelazulene, deca	11.929	860	NJ
4. 483-77-2	1H-Cycloprop[e]azulene, deca Naphthalene, 1,2,3,4-tetrahy	12.650	640	ŊJ
1 510544-50-0	Sulfur, mol. (S8) unknown	12.690	590	NJ
6.	UNKNOWN	14.155	930	J
7 - 0 - 0 - 0	(1H)2,3-Dihydroindene, 1,1,3	14.286	880	NJ
8.	UNKNOWN	16.130	1700	J
9.	UNKNOWN -ORGANIC ACID-	16.454	560	J
10.	UNKNOWN	16.970	2600	J
11.	Phenanthrene, -methyl(-met	17.750	9300	
12. 78-42-2	Phosphoric acid, tris(2-ethy	10.736		J
13.	UNKNOWN PHTHALATE		6000	ŊJ
14.	UNKNOWN	19.286	870	J
15.	UNKNOWN	19.990	8600	J
16.		20.113	3000	J
17.	-Benzo[]dipyran-prop unknow	21.679	1300	J
18.	-Benzo[]dipyran-prop wknow		5500	J
19.	UNKNOWN	21.997	980	J
	-Benzo[]dipyran-prop unknow		4600	J
20.	UNKNOWN	22.860	850	J
21.	UNKNOWN	23.025	1800	. J
22.	UNKNOWN	23.200	3400	J
23.	Cholestanone, -dimethyl-,	23.251	8200	J
24.	UNKNOWN	23.303	2400	J
25.	UNKNOWN	23.477	15000	J
26.	UNKNOWN	23.663	3100	J
27.	UNKNOWN	23.724	25000	J
28.	UNKNOWN	23.807	7000	J
29.	UNKNOWN	23.920	6700	J
30.	UNKNOWN	24.033	5900	J
	321212131141	24.033	5900	ا د
				*

23, 3,7 unknown

substituted naphthalene

11 Substituted phenanthrene

Phosphoric acid, tris(2-ethylhexyl) ester 12

laboratory artifact (phthalate)
FORM I SV-TIC 13

found in SBLK2 2

elute before phenol (15+5VOA target analyte)

EPA SAMPLE NO.

YX349

NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.05

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: M4493.D

Level:

('low/med) LOW

Date Received: 01/10/97

% Moisture: 27

decanted: (Y/N) N

Date Extracted: 01/10/97

Concentrated Extract Volume:

500(uL)

Date Analyzed: 01/17/97

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 7.9

Number TICs found: 33.30

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2. 3. 4. 5.	UNKNOWN UNKNOWN UNKNOWN	24.290 24.372 24.691	3800 3700 8400	
6. 7. 8. 9.				
12. 13. 14.				
17. 18. 19.				
21. 22. 23. 24. 25.				
26. 27. 28. 29.				

. 49

Page: 1

Data file : m4493.d

Matrix : SOIL

CAS #	Compound	R.T.	Estimated Conc.
1 31295-56-4 2 3891-98-3 3 -629-62-9 4 17081-50-4 5 1112-66-9 6 638-36-8 7 112-95-8 8 646-31-1 9 646-31-1 112-95-8 12 629-97-0 13 679-19-2 14 112-95-8 15 16 6418-44-6 17 112-95-8	Dodecane, 2,6,11-trimethyl- Dodecane, 2,6,10-trimethyl- Pentadecane Pentadecane, 2,6,10,13-tetramethyl- Silane, tetra-2-propenyl- unknown Hexadecane, 2,6,10,14-tetramethyl- unknown Eicosane Tetracosane Tetracosane Tetracosane Eicosane Cholestane, 4,5-epoxy-, (4.alpha.,5.alph Eicosane UNKNOWN ALKANE Heptadecane, 3-methyl- Eicosane UNKNOWN ALKANE Heptadecane Heneicosane	9.962 11.06 11.87 13.91	
21 593-45-3 22 112-89-0	Octadecane Octadecane, 1-bromo-	22.49	3361.80 3753.35

Concentration Units: Water: UG/L Soil: UG/KG

13 unknown

1-4,7-12,14,16,17,19-22 unknown alkane

NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX353

ab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK

Case No.: 25268 SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.06

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: M4492.D

Level:

(low/med)

Date Received: 01/10/97

% Moisture: 16

decanted: (Y/N) N

Date Extracted:01/10/97

Concentrated Extract Volume: 500(uL)

Date Analyzed: 01/17/97

Injection Volume:

2.0(uL)

LOW

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 7.2

Number TICs found: 9

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-1.	UNKNOWN	3.299	94	_====
-2.	UNKNOWN	3.388	350	- 3
	UNKNOWN	3.366	140	<u> </u>
4. 141-78-6	Ethyl Acetate			J
-5. 141-79-7	3-Penten-2-one, 4-methyl-	3.714	140	NJB
6.	UNKNOWN	3.823	410	NJAB
7. 123-42-2	2-Pentanone, 4-hydroxy-4-met	4.040	83	JB
8.	z-Pentanone, 4-nydroxy-4-met		6500	
9.	UNKNOWN	5.226	130	JB
	UNKNOWN	25.729	82	J
10			ļ	
11.				
12.				
13.				
14				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.		-:		
25.				
26				
27.				
28.				
29.	-	[
30.	_			
· · · · · · · · · · · · · · · · · · ·				
†		:		

4,5,7,8 found in SBLK2

1-8 elute before phenoi (1st SVOA target analyte)

SEMIVOLATILE OR NICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX354

M4497.D

Tab Name: SWL-TULSA

Contract: 68-D5-0021

Lab Code: SWOK

Case No.: 25268

SAS No.:

SDG No.: YX327

Matrix: (soil/water) SOIL

Lab Sample ID: 28122.07

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

Level:

(low/med) LOW

Date Received: 01/10/97

% Moisture: 21

decanted: (Y/N) N

Date Extracted: 01/10/97

Concentrated Extract Volume:

500(uL)

Date Analyzed: 01/17/97

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 7.6

Number TICs found: 23,18

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOWN	2 270	1200	====
<u> </u>	UNKNOWN ORGANIC ACID	3.370	1300	
3.	UNKNOWN ORGANIC ACID	3.628	430	-
4.	UNKNOWN ORGANIC ACID	3.817	4600	
5. 123-42-2	2-Doptonone 4 balance	4.244	380	J
6.	2-Pentanone, 4-hydroxy-4-met UNKNOWN ORGANIC ACID		5400	NJAB
7. 95 -3 6-3	UNKNOWN ORGANIC ACID	5.971	700	J
8.	1,2,4-Trimethylbenzene	6.348	380	ŊJ
9.	UNKNOWN	8.018	220	J
10. 57-10-3	Benzene, -tetramethyl-	8.636	280	J
	Hexadecanoic acid	15.727	1600	NJ
11. 203-64-5	4H-Cyclopenta[def]phenanthre	15.888	690	ŊJ
12.	UNKNOWN	16.455	3800	J
13. 19407-28-4		16.698	380	NJ
14.	UNKNOWN	16.809	570	J
15.	UNKNOWN	16.961	3600	J
16.	UNKNOWN	20.408	740	Ĵ
17.	UNKNOWN	20.798	800	J
18.	UNKNOWN -PAH	21.004	1400	J
19.	UNKNOWN	21.096	1200	J
20. 192-97-2	Benzo[e]pyrene unknown PAH	21.230	1200	NJ
21.	UNKNOWN ORGANIC ACID	21.889	1900	J
22.	UNKNOWN -PAH-	23.032	790	J
23.	UNKNOWN	23.526	1300	7
24.	OHILIONIA .	23.526	1300	J
25.				
26.				
27.				
28.				
29.				
30.				
30				
			•	

^{11.} unknown

¹³ substituted phenanthrene

⁵³ found in SBLK2

¹⁻⁵ elute before phenol (1st SVOA target analyte)

1 9 4

Page: 1

Data file: m4497.d Matrix: SOIL

CAS #	Compound	R.T.	Estimated Conc.
2 31295-56-4 638-36-8 4 4926-78-7 5 629-94-7 5 112-95-8 7 593-45-3 8 31295-56-4 9 630-01-3 638-68-6 1 55320-06-4 12-95-8 14-95-8 14-95-8 14-95-8 15 -593-49-7 15 -593-49-7 16 36728-72-0 17 630-01-3	Dodecane, 2,6,10-trimethyl- Dodecane, 2,6,11-trimethyl- Hexadecane, 2,6,10,14-tetramethyl- Cyclohexane, 1-ethyl-4-methyl-, cis- Heneicosane Eicosane Octadecane Dodecane, 2,6,11-trimethyl- Hexacosane Triacontane Heneicosane, 11-decyl- Eicosane Eicosane Cholestane Heptacosane Dotriacontane UNKNOWN -ALKANE Hexacosane Hexacosane Hexacosane UNKNOWN -ALKANE	11.05 13.90 14.66 15.30 16.58 17.76 18.31 18.84 19.35 19.84 20.31 20.76 21.18 21.49 21.61 22.03 22.47 22.66 22.93	315.45 357.80 555.58 354.00 1098.56 125.94 120.98 133.52 137.96 140.67 2655.89 2637.52 1772.95 1502.35 2860.83 1285.01 3539.45 2085.62 2033.50
~~ 1/312-3 3-9	Decane, 3,8-dimethyl-	23.46	2417.90

Concentration Units: Water: UG/L Soil: UG/KG

4,14,17 unknown

1-3,5-13, 15, 16, 19, 20 unknown alkane

TPO: []FYI

[X] Attention

[]Action

Region 9

ORGANIC REGIONAL DATA ASSESSMENT

LABORATORY SWOK
SITE NAMEVictoria Golf Course
REVIEW COMPLETION DATE February 21, 1997
REVIEWER'S NAME Adriane Scheele
SOILOTHER
VOA BNA PEST OTHER
<u> </u>
<u> </u>
<u>x</u> <u>x</u>
_ o _ x
<u>x</u> <u>x</u>
<u> </u>
_ o _ o
N/A N/A
<u> </u>
<u> </u>
<u> </u>
0 0
<u>x</u> <u>x</u>

O = Data have no problems or problems that do not affect data quality.

TPO ACTION: None.

TPO ATTENTION: (1) Several results for volatile and semivolatile target analytes are qualified as nondetected and estimated (U,J) due to contamination in laboratory blanks. (2) Several results for volatile and semivolatile target analytes are estimated (J) due to calibration problems. (3) Several results for semivolatile target analytes in one of the method blanks are estimated (J) due to a low internal standard response.

AREAS OF CONCERN: None.

X = Data are qualified due to minor problems.

M = Data are qualified due to major problems.

Z = Data are unacceptable.

N/A = Not Applicable

In Reference to Case No(s).: 25268 Memo #01

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log #1

	Date of Call:	February 13, 1997
	Laboratory Name:	Southwest Labs of Oklahoma, Inc. (SWOK)
	Lab Contact:	Harry Borq
	Region:	9
	Regional Contact: _	Adriane Scheele, ESAT/Lockheed
	Call Initiated By:	Laboratory <u>X</u> Region
<u>Sampl</u>	e to data for the for the force of the contract of the contrac	OG) YX354 for

Summary of Questions/Issues Discussed:

- 1. [VOA] Naphthalene is reported as a tentatively identified compound (TIC) at a retention time of 18.382 min. in Form 1E (page 100) for the volatile fraction of sample YX354. Section 11.1.2.2 of Exhibit D-38/VOA states that semivolatile target compounds listed in Exhibit C are not to be reported as TICs. Please clarify why naphthalene, a semivolatile target compound, is reported or submit a corrected Form 1E.
- 2. [BNA] The response for internal standard perylene-d₁₂ in semivolatile method blank SBLK3 did not meet the quality control (QC) requirements listed in Section 11.3.6 of Exhibit D-50/SVOA. Were the corrective actions specified in Section 12.1.5.4 of Exhibit D-55/SVOA performed? Please clarify.

Summary of Resolution:

- Corrected Form 1E was received at ESAT by fax on February 20, 1997.
- Corrective action was not taken as per Section 12.1.5.4 of Exhibit D-55/SVOA since the blank in question (SBLK3) was the blank from sample reextracts. There was insufficient sample to do a second reextraction. The problem was noted in the SDG narrative.

adrian Achile
Signature

February 21, 1997

ature/

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Contract Laboratory Program REGION 9/LABORATORY COMMUNICATION SYSTEM CSF COMPLETENESS EVIDENCE AUDIT PROGRAM Telephone Communication Summary Form

AUDIT NO.:	2/97/17	LAB CONTACT:	Harry Borg	
CASE NO.:	25268 Memo #01	LAB CODE:	SWOK	
EDG NO.:	YX354	LAB NAME:	Southwest Labs of	_
			Oklahoma, Inc.	-
FILENAME:	25268M01.TCS	LAB LOCATION:	Broken Arrow, OK	

Summary of Questions/Issues Discussed:

The following items were noted during the audit of sample delivery group (SDG) YX354. Please note the corrections in your copy.

- 1. Page numbers 1 through 16 and 17 through 18 are incorrectly listed in Sections 2 and 3, respectively, of Form DC-2-1. The auditor has manually corrected Form DC-2-1 with page numbers 1 through 15 and 16 through 18 for Sections 2 and 3, respectively.
- An unnumbered page was found between pages 54 and 55. The auditor has labeled it as page 54A.
- 3. A handwritten SDG narrative which was not paginated was found after page 962 of the data package. The auditor has paginated the narrative as 963 through 965. The auditor has also included this narrative and page numbers to Section 10 of Form DC-2-4.

Summary of Resolution:

A laboratory response is not required.

Auditor, ESAT/Lockheed

February 13, 1997
Date of Contact

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

LOCKHEE MARTIN by Sign

Lockheed Martin Environmental Services

Environmental Services Assistance Team, Region 9

301 Howard Street, Suite 970, San Francisco, CA 94105-2241

Phone: 415-278-0570 Fax: 415-278-0588

MEMORANDUM

TO:

Rachel Loftin

Site Assessment Manager

States Planning and Asses ment Office, SFD-5

THROUGH:

Rose Fong Page

ESAT Regional Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Jack Berges

Team Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68D60005 Work Assignment No.: 9-96-0-4 Technical Direction No.: 9604112

DATE:

February 10, 1997

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 validation of the following analytical data:

SITE:

Victoria Golf Course

SITE ACCOUNT NO.: zz

CERCLIS ID NO.:

CAD980818926 25218 Memo #01

CASE NO.: SDG NO.:

YX323

LABORATORY:

ANALYSIS:

American Technical & Analytical Services (ATAS)

Volatiles and Semivolatiles

SAMPLES:

12 Water Samples (see Case Summary)

COLLECTION DATE:

December 9 through 13, 1996

REVIEWER:

Dina David-Bailey, ESAT/Lockheed

The comments and qualifications presented in this report have been reviewed and approved by the EPA Work Assignment Manager (WAM) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Deirdre O'Leary (ESAT/Lockheed) at (415) 278-0585 or Rose Fong (QA Office/EPA) at (415) 744-1534.

Attachment

cc: Larry Marchin, TPO USEPA Region 7

TPO: []FYI

[X] Attention

[]Action

SAMPLING ISSUES: [X] Yes

[]No

97-02-10-HDB-01/25218M01.RPT

Data Validation Report

25218 Memo #01 Case No. :

Victoria Golf Course

Laboratory: American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 10, 1997

I. Case Summary

SAMPLE INFORMATION:

VOA and BNA Samples: YX322 through YX326, YX328 through YX333, and

YX363

Concentration and Matrix: Low Level Groundwater

> Analysis: Volatiles and Semivolatiles

> > SOW: OLM03.2

Collection Date: December 9 through 13, 1996 Sample Receipt Date: December 11, 13, and 14, 1996 BNA Extraction Date: December 12 and 16, 1996 VOA Analysis Date: December 12 and 17, 1996 BNA Analysis Date: December 18, 30, and 31, 1996

and January 17, 1997

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): YX331

Equipment Blanks (EB): YX330, YX332, and YX333 ckground Samples (RG): YX324 and YX325

Background Samples (BG): YX324 and YX325 Field Duplicates (D1): YX326 and YX363

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLKDM: YX323, YX323MS, YX323MSD, YX328, and YX330 VBLKDP: YX322, YX324 through YX326, YX329, YX331

through YX333, YX363, and VHBLKDP

YX322, YX322RE, YX324 through YX326, YX326RE, YX329, YX329RE, YX331 through YX333, and SBLKEA:

YX363

SBLKEU: YX323, YX323MS, YX323MSD, YX328, and YX330

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifier Definitions for Organic Data

Review

2: Volatiles and Semivolatiles: Continuing

Calibrations

TPO ACTION:

None.

TPO ATTENTION:

(1) Several volatile results are qualified as nondetected and estimated (U,J) due to contamination in the storage blank. (2) Several results are estimated (J) due to calibration problems. (3) Several semivolatile results are estimated (J) due to low internal standard areas.

RE-Reanalysis; MS-Matrix Spike; MSD-Matrix Spike Duplicate; VHBLK-Storage Blank 97-02-10-HDB-01/25218M01.RPT

SAMPLING ISSUES:

The detected result for di-n-butylphthalate in sample YX323 is qualified as nondetected and estimated (U,J) due to contamination in equipment blank YX330. Di-n-butylphthalate was found in equipment blank YX330 at a concentration of 0.5 μ g/L, which is less than the CRQL of 10 μ g/L.

ADDITIONAL COMMENTS:

A temperature of 10°C was measured in the cooler containing samples YX324, YX326, YX329, YX331, and YX332, which were received at the laboratory on December 13, 1996. This temperature exceeds the 4°C \pm 2°C sample preservation criterion.

No Tentatively Identified Compounds (TICs) were found in samples YX323, YX325, YX326, YX329, YX331 through YX333, and YX363 for the volatile fraction. The TICs found in the remaining samples for the volatile fraction are reported on the Form 1Es. The TICs found in all of the samples for the semivolatile fraction are reported on the Form 1Fs and in the sample delivery group (SDG) narrative included in this report. The user should note that the SDG narrative summarizes TICs which are alkanes.

All method requirements specified in the USEPA Contract Laboratory Program (CLP) Statement of Work (SOW) for Organic Analysis, OLM03.2, have been met.

This report was prepared according to the SOW and the document "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

II. Validation Summary

	VOA		BNA	
	Acceptable,	/Comment	Acceptable/	Comment
HOLDING TIMES	[YES]	[]	[YES]	[]
GC/MS TUNE	[YES]	[]	[YES]	[]
CALIBRATIONS	[NO]	[D]	[NO]	[C,D]
FIELD QC	[NO]	[B]	[ои]	[B]
LABORATORY BLANKS	[NO]	[B]	[YES]	[B]
SURROGATES	[YES]	ίi	(YES)	įπį
MATRIX SPIKE/DUPLICATES	S [YES]	ίí	[YES]	[F]
INTERNAL STANDARDS	[YES]	ři	[00]	[E]
COMPOUND IDENTIFICATION		[G]	[YES]	[G]
COMPOUND QUANTITATION	[YES]	[A]	[YES]	[A]
SYSTEM PERFORMANCE	[YES]	[1	[YES]	[]
DIDIEM PERCONANCE	[teal	r i	[IES]	LJ

N/A = Not Applicable

III. Validity and Comments

- A. The following results, denoted with an "L" qualifier, are estimated and flagged "J" in Table 1A.
 - All results below the contract required quantitation limits

Results below the contract required quantitation limits (CRQLs) are considered to be qualitatively acceptable, but quantitatively unreliable, due to the uncertainty in analytical precision near the limit of detection.

97-02-10-HDB-01/25218M01.RPT

LOCKHEELMARTIN

- B. The following detected results are qualified as nondetected and estimated due to laboratory, equipment, and field blank contamination. The results are flagged "U,J" in Table 1A.
 - Methylene chloride in volatile samples YX322, YX324 through YX326, YX328, YX329, and YX363
 - Di-n-butylphthalate in semivolatile sample YX323

Methylene chloride was found in the storage blank, equipment blanks YX332 and YX333, and field blank YX331. Di-n-butylphthalate was found in equipment blank YX330. (See Table 1A for concentrations.) The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased according to the blank qualification rules presented below.

No positive results are reported unless the concentration of the compound in the sample exceeds 10 times the amount in any associated blank for the common laboratory contaminants or 5 times the amount for other compounds. If the sample result is greater than the CRQL, the quantitation limit is raised to the sample result (U,J). If the sample result is less than the CRQL, the result is reported as nondetected (U,J) at the CRQL.

Although bis(2-ethylhexylphthalate) was found in equipment blank YX330 at a concentration of 1 μ g/L and di-n-octylphthalate in method blank SBLKEU at a concentration of 0.5 μ g/L, no data are qualified because these analytes were not found in any of the associated semivolatile samples.

A storage blank is laboratory reagent water stored in a vial in the same area as the field samples. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage prior to analysis.

An equipment blank is clean water that has been collected as a sample using decontaminated sampling equipment. The intent of an equipment blank is to monitor for contamination introduced by the sampling activity, although any laboratory introduced contamination will also be present.

A field blank is clean water prepared as a sample in the field by the sampler and shipped to the laboratory with the samples. A field blank is intended to detect contaminants that may have been introduced in the field, although any laboratory introduced contamination will also be present. Contaminants that are found in the field blank which are absent in the laboratory method blank could be indicative of a field quality control (QC) problem, a deficiency in the bottle preparation procedure, a difference in preparation of the laboratory and field blanks, or other indeterminate error.

- C. The quantitation limits for the following semivolatile analytes are estimated due to large percent relative standard deviations (%RSDs) in the initial calibration. The results are flagged "J" in Table 1A.
 - 2,4-Dinitrophenol and 4-nitroaniline in samples YX323, YX328, and YX330

Percent RSDs of 31.6 and 33.1 were observed for 2,4-dinitrophenol and 4-nitroaniline, respectively, in the initial calibration

LOCKHEE MARTIN

The initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical sequence and of producing a linear calibration curve.

- D. The detected result and quantitation limits for the following analytes are estimated due to large percent differences (%Ds) in the continuing calibrations. The results are flagged "J" in Table 1A.
 - trans-1,3-Dichloropropene in volatile samples YX322, YX324 through YX326, YX329, YX331 through YX333, YX363, method blank VBLKDP, and storage blank VHBLKDP
 - Pyrene and di-n-octylphthalate in semivolatile samples YX322, YX325, YX329, YX333, and YX363

Percent differences exceeding the $\pm 25.0\%$ QC advisory validation criterion were observed for the analytes listed above in the continuing calibrations performed December 17 and 31, 1996 (see Table 2).

The continuing calibration checks the instrument performance daily and produces the relative response factors for target analytes that are used for quantitation.

- E. The detected results and quantitation limits for the following semivolatile analytes are estimated due to low internal standard areas. The results are flagged "J" in Table 1A.
 - 4,6-Dinitro-2-methylphenol, N-nitrosodiphenylamine,
 4-bromophenyl phenyl ether, hexachlorobenzene,
 pentachlorophenol, phenanthrene, anthracene, carbazole,
 di-n-butylphthalate, fluoranthene, pyrene, butylbenzylphthalate,
 3,3'-dichlorobenzidine, benzo(a)anthracene, chrysene, and
 bis(2-ethylhexyl)phthalate in samples YX322 and YX326
 - Di-n-octylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in samples YX322, YX326, and YX329

The internal standard areas for the samples listed above fell below the QC advisory criterion, as shown below.

<u>Sample</u>	Internal Standard	<u>Area</u>	QC Limits
YX322	Phenanthrene-d ₁₀	47900	49372-197486
	Chrysene-d ₁₂	16882	18020-72082
	Perylene-d ₁₂	9880	13708-54830
YX329	Perylene-d ₁₂	13527	13708-54830
YX326	Phenanthrene-d ₁₀	35633	41344-165374
	Chrysene-d ₁₂	10019	12550-50198
	Perylene-d ₁₂	6252	7692-30768

The detected results and quantitation limits for the analytes listed above are considered quantitatively questionable. Where the results are nondetected, false negatives may exist.

Samples YX322, YX326, and YX329 were reanalyzed due to the low internal standard areas in accordance with SOW requirements. The results from the reanalysis of sample YX322 are presented in Table

LOCKHEEL ARTIN

1A in order to minimize the number of qualified data points. The results from the original analysis of sample YX326 and the reanalysis of sample YX329 are presented in Table 1A because higher area counts were obtained in those analyses.

Internal standards, introduced into every calibration standard, blank, sample, and QC sample, monitor changes in analyte response due to matrix effects and fluctuations in instrument sensitivity throughout the analytical sequence. Internal standards are used to quantitate the concentration of target analytes and surrogate standards.

F. The matrix spike and matrix spike duplicate results for 4-nitrophenol and pentachlorophenol in semivolatile QC samples YX323MS and YX323MSD did not meet the criteria for accuracy specified in the SOW. The percent recoveries are presented below.

<u>Analyte</u>	YX323MS	YX323MSD	QC limits
	%Recovery	%Recovery	%Recovery
4-Nitrophenol	83	101	10-80
Pentachlorophenol	112	112	9-103

The results obtained may indicate poor laboratory technique, or matrix effects which may interfere with accurate analysis. Since these recoveries are above the QC limits and the sample results for these analytes are nondetected, no adverse effect on the quality of the data is expected.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement.

- G. Although not detected in any associated blanks, acetone and phthalates have been commonly found as contaminants in the field and in many laboratories. The user should note that the analytes listed below may be artifacts.
 - Acetone in volatile samples YX322, YX323, and YX329
 - Diethylphthalate in semivolatile samples YX322 and YX324
 - Di-n-butylphthalate in semivolatile samples YX322, YX324 through YX326, YX328, and YX363
 - bis(2-Ethylhexyl)phthalate in semivolatile samples YX324 through YX326, YX328, YX329, and YX363

Low Level Groundwater

Samples for Volatiles

ANALYTICAL RESULTS

Analysis Type:

TABLE 1A

Case No.: 25218 Memo #01

Lab.:

Site: Victoria Golf Course

American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 10, 1997

Concentration in µg/L

															-
Station Location	GW-1			GW-2			GW-3			GW-4		_	l .	'-5-1	_
Sample I.D.	YX32			YX32			YX324		3	YX32		j.		326 D	1
Date of Collection	12/13/			12/9/9	_		12/11/			12/12/		·		11/96	
Volatile Compound	Result	+	Com	Result		Com	Result	_	Com	Result	-	Com	Result		d Com
Chloromethane	10 L			10 U	a karana	100000000000000000000000000000000000000	10 U	1	#0000000000000000000000000000000000000	10 U	daylar	10000000000	and the second second	U	e=::::::::::::::::::::::::::::::::::::
Bromomethane Vinyl chloride	10 L 25	4		10 t	40000000		10 U			10 U			processors and the contract of	U	
Chloroethane	23 10 U			10 T 10 T		 	10 U		B0000000000000000000000000000000000000	10 U		l:::::::::::::::::::::::::::::::::::::	STATES AND STATES AND STATES	U	s.
Methylene chloride	10 C	aparente la	В	10 t	· *********		10 U 10 U	T	В	10 U 12 U	9100000000	В		U J	В
Acetone	11		G	2 1		AG	10 U	1	р (12 U		D		Ų	, D
Carbon disulfide	10 L	1 1 1 1 1 1 1 1 1 1	100000000000000000000000000000000000000	10 U		-70	10 U			10 U	1200000		744717777777777777777	U	20000000
l,1-Dichloroethene	10 t	dan .		10 t		 	10 U			10 U	200000		200000000000000000000000000000000000000	U	
1,1-Dichloroethane	8 I	apresent.	Α	10 U	9 2000		10 U	1000000		10 U	9000000			U	
1,2-Dichloroethene (total)	48			10 t	al assessed		3 L	Incorre	A	10 U	down			บ	
Chloroform	10 L	1 1	es-co-pteoplet	10 U	00000000	lessessesses	10 U	*****		10 U	1000000	Coscosionici	and the second second second	U	aabaaaaaaaa
1,2-Dichloroethane	78			10 t	j		10 U			10 U				U	
2-Butanone	10 L	ı	00000000000	10 U	J	10000000000	10 U	-	100000000000	10 U	******		anno construction of	U	000000000000000000000000000000000000000
1,1,1-Trichloroethane	10 C	1		10 t	J		10 U			10 U			10	U	
Carbon tetrachloride	10 U	J		10 U	J		10 U			10 U	ſ		10	U	
Bromodichloromethane	10 L	J		10 t	J		10 U			10 U			10	U	
1,2-Dichloropropane	10 L	3		10 t	J		10 U			10 U			10	U	
cis-1,3-Dichloropropene	10 L	1		10 t	j		10 U			10 U			10	U	
Trichloroethene	13			10 U			10 U	:		, , 10 U	r		10	U	
Dibromochloromethane	10 L	1		10 t	J		10 U			10 U			10	U	
1,1,2-Trichloroethane	10 L			10 U			10 U	1		10 U				U	
Benzene	10 U	que un const		10 (1000000		10 U	described		10 U	4		and the second second second	U	
trans-1,3-Dichloropropene	10 U	dame.	D	10 U	. [4000000000	10 U	le secono	D	10 U	dana.	D	harman and an annual and	UJ	D
Bromoform	10 U	operation.		10 T	vi menten		10 U	P. C. C. C. C. C.		10 U	4000000			U	
4-Methyl-2-pentanone	10 U		100000000000000000000000000000000000000	10 t		153503550000	10 U	december.	-00-0040-00-00	10 U	down		bactocononessons	U	
2-Hexanone	10 L	devenous.		10 T	40000000		10 U	tarana.		10 U	400000			U	
Tetrachloroethene	10 U	dana.		10 t		0.0000000000000000000000000000000000000	10 U		0000000000000	10 U		197000000000		U	00000000000
1,1,2,2-Tetrachloroethane	10 C	4000000		10 t	0.000000		10 U	0.0000000000000000000000000000000000000		10 U	graniana.		encenno construcción de la const	U	
Toluene	10 U	180000000	33653366334	10 ζ			10 U		100.000000000	10 U		10000000000		U	34503860083
Chlorobenzene	10			J 01	4000000		10 U	9.000.000		10 U	generalis.		Processors and the second	U	
Ethylbenzene	10 U		300000000000000000000000000000000000000	10 L	Л 2000-жы	280000000000000000000000000000000000000	10 U	1	000000000000000000000000000000000000000	10 U				U	8 50000000
Styrene	10 t			10 t			10 U			10 U	quinana			U	
Xylene (total)	10 U			10 L	/ 	*******	10 U	£338338		10 U		3888888	10	U	
															1
						*************			e e e e e e e e e e e e e e e e e e e	ere en annon antonolità del 1861 de			y y innerenne estatutututus, 1900.		

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

Low Level Groundwater

Samples for Volatiles

ANALYTICAL RESULTS TABLE 1A

Analysis Type:

Case No.: 25218 Memo #01

Site: Victoria Golf Course

Lab.: American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 10, 1997

Concentration in $\mu g/L$

Station Location	GW-9			GW-1	0-1		GW-1	l		GW-1	2-1		GW-	13-1	
Sample I.D.	YX32	8		YX32			YX330			YX33		3		32 EF	3
Date of Collection	12/10/	96		12/11	/96		12/9/9		İ	12/10		-	12/10		
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val Co	n F	Result		l Com	Result		Com
Chloromethane	10 U	ſ		10 U			10 U			10 U			10		00
Bromomethane	10 U	d		10 t	j		10 U	1		10 U			10		
Vinyl chloride	4 L	J	Α	23	1	************	10 U		20000000000	10 U	e processor	00000000000	10	an process	pasuecece;
Chloroethane	10 U			10 ξ	j		10 U	1		10 t	j		10 7	ed www.	
Methylene chloride	10 U	J	В	10 τ	JJ	В	10 U		10000 200000	14	201000000	В	5	and a second	AB
Acetone	10 U			3 1	, j	AG	10 U			10 U	j		10 7	ال	
Carbon disulfide	10 U		*****	. 10 t	2000000	41410000000000	10 U		9000p0000	10 U		000000000000000000000000000000000000000	10 1	are an arrange of	100000000000000000000000000000000000000
1,1-Dichloroethene	10 U			10 t	j		10 U			10 U	alama.		10.1		
1,1-Dichloroethane	10 U	-		10 U	J	(TAMELINA CONTRACT	10 U		********	10 U		000000000000000000000000000000000000000	10 1	***	0000000000
1,2-Dichloroethene (total)	5 L	1	A	72			10 U			10 U	1		10 1	en erenen	
Chloroform	10 U			10 U	Л	***********	10 U	000000000000000	****	10 T	openio	00000000000	10 1	entarence.	\$0000000000
1,2-Dichloroethane	10 U			4 1	. j	A	10 U			10 t			10)		
2-Butanone	10 U			10 t	openion.	***********	10 U		0000 (2000)	10 U		010000000000	10 1		100000000
1,1,1-Trichloroethane	10 U			tot	1		10 U	lasaren karenara		10 t	odzana.		10 1		
Carbon tetrachloride	10 U			10 L	A 10000000	40000000000	10 U	recovered to control	ion composition	10 L	and agreement	1800000000000	10 1	representa	10000000000
Bromodichloromethane	10 U			10 t	,		10 U			10 U		1	10 1		
1,2-Dichloropropane	10 U			10 L	a processes	100000000000	10 U	Received to 0 100 100 100 100 100 100 100 100 100	000000000	10 U	agesesse.	01-040-04-040-04	10 1		100000000
cis-1,3-Dichloropropene	10 U			10 t	,		10 U			10 U			10 1		
Trichloroethene	16		********	27	10000000	1000000000000	10 U	0000000	80000000000	10 L	ed destroy	01-01-01-0100	10 (representation of the second	100000000000
Dibromochloromethane	10 U			10 t	1		10 U			10 t			10 1		
1,1,2-Trichloroethane	10 U		***********	10 U	s. 10000000	000000000000	10 U			10 L	**	100000000000000000000000000000000000000	10 1	00 00000000	6000000000
Benzene	10 U			10 t	1		10 U			10 T			10 (
trans-1,3-Dichloropropene	10 U		***********	10 U	4 0000000	D	10 U		0500000000	10 L	-	D	10 (000000000	D
Bromoform	10 U			10 t			10 U			10 U	.1		10 1		
4-Methyl-2-pentanone	10 U		annon annon	10 L	grane are	000000000000000000000000000000000000000	10 U	 	30,000,000,000	10 L	or processors	300000000000000000000000000000000000000	10 0	esperiment.	
2-Hexanone	10 U			10 L	damen		10 U			10 T	A		10 1		
Tetrachloroethene	10 U	V00-V00-01	0000000000	4 L	40000000	Α	10 U			10 L	ederanee	1000000000	10 (ngunana	
1,1,2,2-Tetrachloroethane	10 U	1 1		101			10 U			10 U	alassana		10 (
Toluene	10 U	8000000	20000000000	10 U	********	0000000000	10 U	300000000000000000000000000000000000000	1000	10 L	o constant	1060000000	10 0	aprovince.	
Chlorobenzene	10 U			13			10 U			10 T	alaman.		10 1		
Ethylbenzene	10 U	2020000	2000000000	10 U	: #00000000 [800000000000000000000000000000000000000	10 U			10 C	C 0000000		10 t	n pourous	
Styrene	10 U			10 t			10 U			10 C			10 (
Xylene (total)	10 U	14869863	380306000	10 U		33013000000	10 U			10 L		10000000	10 (
,,,,,,,	100			10 0			10 0			10 C		 	10 (ار الا	80000000
			.000000000												
										560666666		100000000	 	34000000	
						980990000			800 (00000	808888888	455555		- 		
			333333333		10000000	3333333333	555550000000000000000000000000000000000	300000 30000	5000 500000	35533555555555		000000000000000000000000000000000000000	Sagagagagagagagagagagagagagagagagagagag	J	69660500000

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

Low Level Groundwater

Samples for Volatiles

ANALYTICAL RESULTS TABLE 1A

Analysis Type:

Case No.: 25218 Memo #01

Lab.:

Site: Victoria Golf Course

American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 10, 1997

Concentration in $\mu g/L$

	_														
Station Location	GW-1			GW-2			Metho		ank	Metho		ınk		ge Bl	
Sample I.D.	YX33		3	YX36:			VBLK	DМ		VBLK	DP		VHB	LKD	P
Date of Collection	12/11/			12/11/					·		1 1				,
Volatile Compound	Result		Com	Result		Com	Result	-	Com	Result		Com	Result		Com
Chloromethane	10 U		-00000000000000000000000000000000000000	10 U	1	00000000000	10 U	Lancer.	*********	10 U		5000000000000	10	and anana	4.0000000
Bromomethane	10 U	grounder.		10 Ū	00000000		10 U			10 U			10	and and	
Vinyl chloride	10 U	. 1	4000565600000	10 U	1	00000000000	10 U	3000000	00000000000	10 U	.0000000	550000000000000	10		400000000
Chloroethane	10 U	40000000		10 €	A constant		10 U	Programme .		10 U			10	inispersion	
Methylene chloride	9 L	danan	AB	13 U	•	В	10 U	lancer on the	00000000000	10 U	0000000	500000000000	9		AB
Acetone	10 U	abanana		10 U	1000000		10 U			10 U			10	end men	
Carbon disulfide	10 U		90000000000	10 U	1	0000000000	10 U		600000000000000000000000000000000000000	10 U	-0005500	000000000000000000000000000000000000000	10		
1,1-Dichloroethene	10 U	10000000		10 U	Partners.		10 U	100000000		10 U	possessi		10	an parame	
1,1-Dichloroethane	· 10 U	. .	400000000000	10 U	1	ocoboosoboo	10 U	arrener.	0.0000000000	10 U	lana and	555555555555	10	and arrests	0000000000
1,2-Dichloroethene (total)	10 U	que en cons		10 U	1000000		10 U			10 U			10	corporesso.	
Chloroform	10 U	4	-00000000000	10 U			10 U	4555555	10000000000	10 U	10000000	000000000000000000000000000000000000000	10	anabanana	
1,2-Dichloroethane	10 U	quare.		10 U			10 U			10 U	15555555		10	***	
2-Butanone	10 U		-00000000000	10 U		dadahan sasa	10 U			10 U	2000000		10	anakaanaan	
1,1,1-Trichloroethane	10 U	a processor		10 U			10 U			10 U	Anna and		10	on possession	
Carbon tetrachloride	10 U	. harrier		10 U			10 U			10 U	Janeary		10	U	
Bromodichloromethane	10 U	aparana.		10 U	Acres 600		10 U			10 U			10	over the contract of	
1,2-Dichloropropane	10 U	4		10 U	docessos	000000000000	10 U			10 U	2000000		, 10	U	
cis-1,3-Dichloropropene	10 U	operation.		10 U	Assessed		10 U			10 U	100000000		10	AND AND ASSESSED.	
Trichloroethene	10 U	.4		10 U			10 U			10 U	January 1		10		
Dibromochloromethane	10 U	openione.		10 U			10 U			10 U			10	via poviaco	
1,1,2-Trichloroethane	10 U	Accessor		10 U	1		10 U	1		10 U	Inches of		10		
Benzene	10 U	apasasas		10 U	******		10 U			10 U	guerren		10	U	
trans-1,3-Dichloropropene	10 U	diam'r.	D	10 U		D	10 U			10 U	J	D	10	U J	D
Bromoform	10 U	o p nosonos		10 U			10 U			10 U			10	Ų	
4-Methyl-2-pentanone	10 U			10 U			10 U			10 U			10	U	
2-Hexanone	10 U	ı		10 U			10 U			10 U			10	U	
Tetrachloroethene	10 U	J		10 U	ſ		10 U			10 U			10	U	
1,1,2,2-Tetrachloroethane	10 U	1		10 U			10 U			10 U			10	U	
Toluene	10 U	i		10 U	1		10 U			10 U			10	U	
Chlorobenzene	10 U			10 U			10 U			10 U			10	U	
Ethylbenzene	10 U	ſ		10 U			10 U	**********		10 U			10	U	
Styrene	10 U			10 U			10 U			10 U			10	U	
Xylene (total)	10 U	r		10 U			10 U			10 U			10	U	
		********	************		9000000	.ucccccd(6)	p.,	p00000000	**************************************	pp000000000000000000000000000000000	+00000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ve-coccoccodddddddddd	v:000000000	***************************************
	er er en en en en en en en en en en en en en	*******	T ANAGES (10)	p	*00000000	uus aadadda	processes to 100000,00000	1000000000	(000000000000000000000000000000000000	passassassassassass	90000000	woose66668	san code con (fp60 666 666)	upopoteotii	m4000000000
		9000000	49999000000000	p.,	0000000	naeriadodisă		10000000	146020000000		16048080	000100000000	ua ca a a a a a a a a a a a a a a a a a	000 000000	personani
		hois	38886688	l:::::::::::::::::::::::::::::::::::::	lesses:	20022300		5000000			5000000	400000000000000000000000000000000000000		edees	decessors.

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

ANALYTICAL RESULTS TABLE 1A

Analysis Type:

Case No.: 25218 Memo #01

Site: Victoria Golf Course

Lab.: American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 10, 1997

Low Level Groundwater

Samples for Volatiles

Concentration in µg/L

Sample I.D.	CRQL														
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	l Com
Chloromethane	10				1									<u> </u>	100
Bromomethane	10														
Vinyl chloride	10							*2010/2010	199000000000			C		\$000000	1000000000
Chloroethane	10														
Methylene chloride	10								i constant		Part Control	nersees seem		0000000	1000000000
Acetone	10														
Carbon disulfide	10											,		100000	.passas.sasa
l,1-Dichloroethene	10														
1,1-Dichloroethane	10														10000000000
1,2-Dichloroethene (total)	10														
Chloroform	10											,			500000000
1,2-Dichloroethane	10														
2-Butanone	10							ranging (r.)		in were a service and a service and a		nanananananan	Processor (1990)	1000000	2000000000
1,1,1-Trichloroethane	10														
Carbon tetrachloride	10					***************************************		000000			NATIONAL PROPERTY.			0000000	.poecoccoco
Bromodichloromethane	10														
1,2-Dichloropropane	10						***************************************	resonations	***********		rgrundagener	1000000000000		10000000	P00-000-00-00-00-00-00-00-00-00-00-00-00
cis-1,3-Dichloropropene	10														
Trichloroethene	10								encon none		50000000	ereit erenengene.	917755555555555555555555555555555555555	0000000	p->>>>
Dibromochloromethane	10														
,1,2-Trichloroethane	10							**********							P000000000
Benzene	10														
rans-1,3-Dichloropropene	10							2000000	anterna com		*****			P9000000	000000000
Bromoform	10														
-Methyl-2-pentanone	10			***************************************		***************************************	***************************************	0000000	00000000000		0000000		200000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000
-Hexanone	10														
Tetrachloroethene	10			***************************************	*****	********	************	9000000	00000000000	*******************	0000000	00000000000	000000000000000000000000000000000000000	100000000	200000000000
,1,2,2-Tetrachloroethane	10														
oluene	10				0000000	000000000000000000000000000000000000000	600000000000000000000000000000000000000				200000	000000000		200000	(CONTROL OF THE CONTROL OF THE CONTR
Chlorobenzene	10														
ithylbenzene	10	9399999	xxxxxxxxxx	19999 000000000000000000000000000000000	G000000			3.00036				8080808088		(1888) 	
tyrene	10														Etteres
(ylene (total)	10	00000010	0000000000									999999999			
	va.v.eeeeeeeeeeeeeee	0000000												8888	
					::::l										
		20000000			(0000000000000000000000000000000000000										
															(00000000000000000000000000000000000000
		1000000													
		1		ľ	- 1		1	- 1			- 1		į	. [

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

ANALYTICAL RESULTS

TABLE 1A

Case No.: 25218 Memo #01

Victoria Golf Course

Site: Lab.:

2,6-Dinitrotoluene

3-Nitroaniline

American Technical & Analytical Services (ATAS)

10 U

25 U

10 U

25 U

Reviewer: Dina David-Bailey, ESAT/Lockheed

Analysis Type:

Low Level Groundwater Samples

for Semivolatiles

Station Location	GW-1	-1		GW-2		GW-3	-1	GW-4-	-1	GW-5	-1	GW-9	,	GW-	10-1
Sample I.D.	YX32	_		YX32		YX32	_	YX325	_	YX32	-	YX32		YX32	
Date of Collection	12/13/			12/9/9		12/11/		12/12/		12/11/		12/10		12/11	-
Semivolatile Compound			Com	Result	Val Com	Result	Val Com	 	Val Com		Val Com	Result	Val Com	Result	Val Con
Phenol	10 U	, <u></u>	Com	10 U		10 U	+	10 U	van com	10 U		10 U		10 L	
bis(2-Chloroethyl)ether	10 U			10 U		10 U		10 U		10 U	.1	10 U		10 T	
Chlorophenol	10 U		***********	10 U		10 U		10 U		10 U		10 U	(0000000 000000000000000000000000000	10 U	aparanganan
3-Dichlorobenzene	10 U			10 U		10 U		to U		10 U		10 U	j	10 t	
1,4-Dichlorobenzene	5 L	J	Α	10 U		10 U		10 U	unanata para anaka	10 U	A CONTRACTOR OF THE STREET	10 U	a assassa assassassas	10 U	
1,2-Dichlorobenzene	2 L	J	A	10 U		10 ∪		10 U		10 ∪		10 t	il I	10 t	
2-Methylphenol	10 U		ntonous nancous	10 U		10 U		10 U		10 U		10 U	J	10 U	
2,2'-oxybis(1-Chloropropane)	10 U			10 U		10 U		10 U		10 U		10 U	1	10 t	jl l
4-Methylphenol	10 U			10 U		10 U		10 U		10 U		10 U	J	10 U	J
N-Nitroso-di-n-propylamine	10 U			10 U		10 U		10 U		10 U		10 t	j l	10 U	j
Hexachloroethane	10 U			10 U		10 U		10 U		10 U		10 U	J	10 U	J
Nitrobenzene	10 U			10 U		10 U		10 U		10 U		10 L	1	10 t	,
Isophorone	10 U			10 U	.	10 U		10 U		10 U		10 U	,	10 L]
2-Nitrophenol	10 U			10 U		10 U		10 U		10 U		10 L		10 L	1
2,4-Dimethylphenol	10 U			10 U		10 U		10 U		10 U		10 U		10 U	,
bis(2-Chloroethoxy)methane	10 U			10 U		10 U		10 U		10 U		10 U	1	10 L	ıl l
2,4-Dichlorophenol	10 U			10 U		10 U		10 U		10 U		10 U	ı İ	10 U	,
1,2,4-Trichlorobenzene	10 U			10 U		10 U		10 U		10 U		10 U		10 L	ıl l
aphthalene	10 U			10 U		10 U		10 U		10 U		10 U		10 U	1
Chloroaniline	10 U			10 U		10 U		10 U		10 U		10 U		10 U	
Hexachlorobutadiene	10 U			10 U		10 U		10 U		10 U		10 U		10 U	
4-Chloro-3-methylphenol	10 U			10 U		10 U		10 U		10 U		10 U		10 U	
2-Methylnaphthalene	10 U			10 U		10 U	·	10 U		10 U		10 U		10 U	
Hexachlorocyclopentadiene	10 U			10 U		10 U		10 U		10 U		10 U		10 U	1
2,4,6-Trichlorophenol	10 U			10 U		10 U		10 U		10 U		10 U		10 U	
2,4,5-Trichlorophenol	25 U			25 U		25 U		25 U		25 U		25 U		25 U	
2-Chloronaphthalene	10 U			10 U		10 U		10.U		10 U		10 U		10 U	
2-Nitroaniline	25 U			25 U		25 U		25 U		25 U		25 U		25 U	
Dimethylphthalate	10 U			10 U	-	10 U		10 U		10 U	1.2	10 U		10 U	
Acenaphthylene	10 U			10 U		10 U		10 U		10 U		10 U		10 U	

10 U

25 U

10 U

25 U

10 U

25 U

10 U

25 U

10 U

25 U

Station Location	GW-1	-1		GW-2		GW-3	3-1		GW-4-1	٠	GW-5	5-1		GW-9)	GW-	10-1
Sample I.D.	YX32	2		YX32	3	YX32	24 BG		YX325	BG	YX32	6 D	1	YX32	8	YX3	29
Date of Collection	12/13	/96	,	12/9/9	6	12/11	/96		12/12/9	6	12/11.	/96		12/10	/96	12/11	1/96
Semivolatile Compound	Result	Val (Com	Result	Val Con	1 Result	Val Co	m Resu	ilt V	/al Com	Result	Val	Com	Result	Val Com	Result	Val Con
Acenaphthene	10 U			10 U		10 U	ı I		10 U		10 U			10 U		10 U	J
2,4-Dinitrophenol	25 L			25 U	J C	25 U	I .		25 U		25 U			25 U	J C	25 t	J
4-Nitrophenol	25 U			25 U	F	25 U	J		25 U		25 U			25 U		25 U	J
Dibenzofuran	10 t			10 U		10 t	I I		10 U		10 U	ı		10 U		10 t	J
2,4-Dinitrotoluene	10 U			10 U		10 U] [10 U		10 U	r		10 U		10 t	J
Diethylphthalate	3 L	J.	AG	10 U		0.6 I	JA	3	10 U		10 U			10 U		10 T	j
4-Chlorophenyl phenyl ether	10 U			10 U		10 t	J		10 U		10 U	J		10 U		10 t	J
Luorene	10 t			10 U		10 T	J		10 U		10 U	i .		10 U		10 T	j
Nitroaniline	25 U			25 U	J C	25 U	J		25 U		25 U	1		25 U	J C	25 U	J
4,6-Dinitro-2-methylphenol	25 U	J	E	25 U		25 t	ıl l		25 U		25 U	J	E	25 U		25 (j l
N-Nitrosodiphenylamine	10 U	J	Е	10 U		10 U	j l		10 U		10 U	J	E	10 U		10 U	J
4-Bromophenyl phenyl ether	10 L	J	E	10 U		10 U	7		10 U		10 U	J	E	10 L		10 t	J
Hexachlorobenzene	10 U	J	Е	10 U		10 U	J		10 U		10 U	J	E	10 U		10 T	J
Pentachlorophenol	25 U	J	E	25 U	F	25 U	ı l		25 U		25 U	J	E	25 U		25 T	J
Phenanthrene	10 U	J	E	10 U		10 U	,		10 U		10 U	J	Е	10 U		10 U	J
Anthracene	10 t	J	E	10 U		10 L	ř.		10 U		10 U	J	E	10 U	1 1	10 t	j
Carbazole	10 U	J	E	10 U		10 L	ı l		10 U		10 U	J	Е	10 U		10 U	J
Di-n-butylphthalate	7 L	J.	AEG	10 U	J B	57	G		21	G	2 L	J	AEG	1 L	J AG	10 t	1
Fluoranthene	10 U	J]	E	10 U		10 U	i I		10 U		10 U	J	E	10 U		10 U	J
Pyrene	10 U	J]	DE	10 U		10 U			10 U .	J D	10 U	J	E	10 U		10 U	J J D
Butylbenzylphthalate	10 U	J	Е	10 U		10 U			10 U		10 U	J	Е	10 U		10 U	J
3,3'-Dichlorobenzidine	10 U	J]	₿	10 U		10 L			10 U		10 U	j	E	10 U		10 U)
Benzo(a)anthracene	10 U	JI	Ε	10 U		10 U			10 U		10 U	J	Е	10 U		10 U	J
Chrysene	10 U	J I	3	10 U		10 U			10 U		10 U	J	E	10 U		10 C	,
s(2-Ethylhexyl)phthalate	10 U	JI	Ε	10 U		2 L	J AC	}	1 L J	I AG	4 L	J	AEG	****	G	6 I	J AG
Di-n-octylphthalate	10 U	J 1	ЭЕ	10 U		10 U			10 U J	ı D	10 U	J	E	10 U		10 U	J DE
Benzo(b)fluoranthene	10 U	JI	E	10 U		10 U			10 U		10 U	J	E	10 U		10 U	J J E
Benzo(k)fluoranthene	10 U	J 1	3	10 U		10 U			10 U		10 U	J	E	10 U		10 U	odrovova kasa wa
Benzo(a)pyrene	10 U	J	Ξ	10 U		10 U		A	10 U		10 U	00000000	E	10 U	1000000	10 L	0 4 00000000 4 00000000000
Indeno(1,2,3-cd)pyrene	10 U	JI	1	10 U		10 U			10 U		10 U	10000000	E	10 U		10 L	. 1 1
Dibenz(a,h)anthracene	10 U	A44444	3	10 U		10 U			10 U		10 U	2000000	Е	10 U		10 L	representation of the second
Benzo(g,h,i)perylene	10 U	JI	3	10 U		10 U		0000 0000000000000000000000000000000000	10 U		10 U	1	E	10 U		10 t	. 1 1

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1A

Case No.: 25218 Memo #01

Victoria Golf Course

Site: Vict

American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date:

February 10, 1997

Analysis Type: Low Level Groundwater Samples

for Semivolatiles

Concentration	in	μg/	L
---------------	----	-----	---

									T					
Station Location	GW-11		GW-1		GW-1		GW-1		GW-2		Meth	od Blank	Metho	d Blank
Sample I.D.	YX330		YX33		YX33		YX33	3 EB	YX36	3 D1	SBLE	KEA	SBLK	EU .
Date of Collection	12/9/9		12/10		12/10/		12/11	/96	[12/11/	96				
Semivolatile Compound		Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com
Phenol	10 U		10 U		10 U		10 U		10 U		10 U]	10 U	
bis(2-Chloroethyl)ether	10 U		10 U		10 U		10 L		10 U		10 t	J	10 U	
Chlorophenol	10 U		10 U		10 U		10 U	r	10 U		10 U	j	10 U	
3-Dichlorobenzene	10 U		10 U		10 U		10 L		10 U		10 t	j	10 U	
1,4-Dichlorobenzene	10 U		10 U		10 U		10 U	/ .	10 U		J 01	J	10 U	
1,2-Dichlorobenzene	10 U		10 U		10 U		10 L	4	10 U		10 U	j l	10 U	
2-Methylphenol	10 U		10 U		10 U		10 U	r	10 U		10 U	J	10 U	
2,2'-oxybis(1-Chloropropane)	10 U		10 U		10 U		10 L	rl l	10 U		10 t	ji i	10 U	
4-Methylphenol	10 U		10 U	I I	10 U		10 U		10 U		10 U	j l	10 U	
N-Nitroso-di-n-propylamine	10 U		10 U		10 U		10 U		10 U		10 T	1	10 U	
Hexachloroethane	10 U		10 U		10 U		10 U		10 U		10 U	J I	10 U	
Nitrobenzene	10 U		10 U		10 U		10 U		10 U		10 t	1	10 U	
Isophorone	10 U		10 U		10 U		10 U		10 U		10 U	,	10 U	•
2-Nitrophenol	10 U		10 U		10 U		10 U		10 U		10 L		10 U	
2,4-Dimethylphenol	10 U		10 U		10 U		10 U		10 U		10 U	j l	10 U	12012112
bis(2-Chloroethoxy)methane	10 U		10 U		10 U		10 U		10 U		10 L		10 U	
2,4-Dichlorophenol	10 U		10 U	ŀ	10 U		10 U		10 U		10 U		10 U	
1,2,4-Trichlorobenzene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
aphthalene	10 U		10 U		10 U		10 U		.10 U		10 U		10 U	
Chloroaniline	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Hexachlorobutadiene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	*****************
4-Chloro-3-methylphenol	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
2-Methylnaphthalene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	000000000000000000000000000000000000000
Hexachlorocyclopentadiene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
2,4,6-Trichlorophenol	10 U		10 U		10 U		10 U		10 U		10 U		10 U	*************
2,4,5-Trichlorophenol	25 U		25 U		25 U		25 U		25 U		25 U		25 U	
2-Chloronaphthalene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
2-Nitroaniline	25 U		25 U		25 U		25 U		25 U		25 U		25 U	
Dimethylphthalate	10 ·U		10 U		10 U		10 U		10 U	***	10 U		10 U	
Acenaphthylene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
2,6-Dinitrotoluene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
3-Nitroaniline	25 U		25 U		25 U		25 U		25 U		25 U		25 U	

Station Location Sample I.D. Date of Collection	GW-11 YX330 12/9/96	ЕВ	GW-12-1 YX331 1 12/10/96		GW-1: YX332 12/10/	2 EB	GW-1 YX33: 12/11/	3 EB	GW-2 YX36: 12/11/	3 D1	Metho SBLK	od Blank EA	Metho SBLK	d Blank EU
Semivolatile Compound		al Com		al Com		Val Com	Result	Val Com		Val Com	Result	Val Com	Result	Val Con
Acenaphthene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	, ux con
2,4-Dinitrophenol	25 U J	c	25 U		25 U		25 U		25 U		25 U		25 U	
4-Nitrophenol	25 U	100000000000000000000000000000000000000	25 U	6010000000000	25 U	***************************************	25 U		25 U		25 U	1	25 U	
Dibenzofuran	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
2,4-Dinitrotoluene	10 U		10 U		10 U		10 U		10 U	2000000 00000000000	10 U	\$200000 P000000000	10 U	100000000
Diethylphthalate	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
4-Chlorophenyl phenyl ether	10 U		10 U	2011/2000/2000	10 U		10 U		10 U	000000000000000000000000000000000000000	10 U	laccourt horsestoneses	10 U	
Nuorene	10 U		10 U		10 U		10 U		10 U		10 U	dennier den service de	10 U	
Nitroaniline	25 U J	C	25 U		25 U		25 U		25 U		25 U	4~~~~~	25 U	pocosood (2000/2000)
4,6-Dinitro-2-methylphenol	25 U		25 U		25 U		25 U		25 U		25 U		25 U	
N-Nitrosodiphenylamine	10 U		10 U	22 - 0.000.000.000.00	10 U		10 U		10 U	xxxxxxxxxxxxxxx	10 U	100000000000000000000000000000000000000	10 U	100000000000000000000000000000000000000
4-Bromophenyl phenyl ether	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Hexachlorobenzene	10 U		10 U		10 U		10 U		10 U	************	10 U		10 U	
Pentachlorophenol	25 U		25 U		25 U		25 U		25 U		25 U		25 U	
Phenanthrene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	2000000
Anthracene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Carbazole	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Di-n-butylphthalate	0.5 L J	AB	10 U		10 U		10 U		2 L	J AG	10 U		10 U	
Fluoranthene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	120000000000000000000000000000000000000
Pyrene	10 U		10 U		10 U		10 U	J D	10 U	J D	10 U		10 U	
Butylbenzylphthalate	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
3,3'-Dichlorobenzidine	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Benzo(a)anthracene	10 U	<u> </u> -	10 U		10 U		10 U		10 U		10 U		10 U	*
hrysene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
s(2-Ethylhexyl)phthalate	1 L J	AB	10 U		10 U		10 U		3 L	J AG	10 U		10 U	
Di-n-octylphthalate	10 U		10 U		10 U		10 U	J D	10 U	J D	10 U		0.5 L	J AB
Benzo(b)fluoranthene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Benzo(k)fluoranthene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Benzo(a)pyrene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Indeno(1,2,3-cd)pyrene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Dibenz(a,h)anthracene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Benzo(g,h,i)perylene	10 U		10 U		10 U		10 U		10 U		10 U		10 U	

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

Case No.: 25218 Memo #01

TABLE 1A

Site:

Victoria Golf Course

Lab.:

American Technical & Analytical Services (ATAS)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date:

February 10, 1997

Analysis Type:

Low Level Groundwater Samples

for Semivolatiles

Concentration in µg/L

				2						1			1								
Sample I.D.	CRQI	Ĺ							•												
												_									
Semivolatile Compound	Result	Val	Com	Result	Va	l Com	Result	Va	Com	Result	V:	ıl Com	Result	Va	l Com	Result	Va	Com	Result	Va	al Com
Phenol	10		100000000		200 000000			5500 55500													
bis(2-Chloroethyl)ether	10																				
Chlorophenol	10		200000000		5000000000			0000 00000	0.00000000												
,3-Dichlorobenzene	10																				
1,4-Dichlorobenzene	10	ļ																			
1,2-Dichlorobenzene	10																				
2-Methylphenol	10								J											- T	nagranananan
2,2'-oxybis(1-Chloropropane)	10																				
4-Methylphenol	10																			1	AN PROCESSOR
N-Nitroso-di-n-propylamine	10																				
Hexachloroethane	10															***************************************					.0010000000000
Nitrobenzene	10																il				
Isophorone	10																20,000.00			*******	60\$00000000
2-Nitrophenol	10																				
2,4-Dimethylphenol	10									#1000000000000000000000000000000000000	*****	***********			× (************************************	200000000000000000000000000000000000000	60 000000			8 (80.30)	
bis(2-Chloroethoxy)methane	10																				
2,4-Dichlorophenol	10				1			55565555555	70000000	4***************				9901400000	choccoccoccid	:::::::::::::::::::::::::::::::::::::::	2000000	.000,000,000		27 20000	000000000000000000000000000000000000000
1,2,4-Trichlorobenzene	10																1				1
aphthalene	10	Lancardan base				http://www.		*******	3000000000		000000000000000000000000000000000000000	0.000000000		22,000,000			salta arasas	100000000000000000000000000000000000000			8000000000
Chloroaniline	10																				4
Hexachlorobutadiene	10		400000000		01/20/2020	00.000000000000000000000000000000000000) 						1	xx 1 000000	***********						
4-Chloro-3-methylphenol	10																				
2-Methylnaphthalene	10		00000000		1200000	 		een Heeselik				100000000									1
Hexachlorocyclopentadiene	10				1							.		1							
2,4,6-Trichlorophenol	10				*(************************************																1
2,4,5-Trichlorophenol	25											1					1			1	
2-Chloronaphthalene	10				5 (500)							1									1
2-Nitroaniline	25											1						/			
Dimethylphthalate	10	******	833333																		
Acenaphthylene	10							1				 		1				*********		1	
2,6-Dinitrotoluene	10																				
3-Nitroaniline	25													X		300000000000000000000000000000000000000	9990000			3055550	30000000000
7-1410-04HHHIC												1									4

Sample I.D.	CRQI																				
Semivolatile Compound	Result	Val Co	om	Result	Val	Com	Result	Val	Com	Result	Va	Com	Result	Va	Com	Result	Val	Com	Result	V	al Com
Acenaphthene	10																				
2,4-Dinitrophenol	25																				
4-Nitrophenol	25											<u> </u>									
Dibenzofuran	10																				
2,4-Dinitrotoluene	10			*************						*******************											
Diethylphthalate	10																				
4-Chlorophenyl phenyl ether	10															**********************		<u> </u>			
uorene	10																				
Nitroaniline	25																				
4,6-Dinitro-2-methylphenol	25																				
N-Nitrosodiphenylamine	10						<u></u>								1						
4-Bromophenyl phenyl ether	10																				
Hexachlorobenzene	10																				
Pentachlorophenol	25																				
Phenanthrene	10						,						404000000000000000000000000000000000000								
Anthracene	10																				
Carbazole	10			450000000000000000000000000000000000000		*******		500,000,000					************			******************		1			
Di-n-butylphthalate	10																				
Fluoranthene	10	0000000000000000		000000000000000000000000000000000000000				×		******************	********	sandanaanaan									uda a la constante
Pyrene	10																				
Butylbenzylphthalate	10									***********								<u> </u>			
3,3'-Dichlorobenzidine	10																				
Benzo(a)anthracene	10								not the second color												
Chrysene	10																				
s(2-Ethylhexyl)phthalate	10																	<u> </u>			
Di-n-octylphthalate	10																				
Benzo(b)fluoranthene	10			463000000000000000000000000000000000000		200000000000	00.000000000000000000000000000000000000	000 000000	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	coccoccossos stresso											
Benzo(k)fluoranthene	10																				
Benzo(a)pyrene	10																				
Indeno(1,2,3-cd)pyrene	10																				
Dibenz(a,h)anthracene	10									*********											
Benzo(g,h,i)perylene	10																				

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR ORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared according to the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Page <u>1</u> of <u>1</u>

TABLE 2

Volatiles and Semivolatiles: Continuing Calibrations

Case No.:

25218 Memo #01

Site:

Victoria Golf Course

Laboratory: American Technical & Analytical Services (ATAS)

Reviewer:

Dina David-Bailey, ESAT/Lockheed

Date:

February 10, 1997

PERCENT DIFFERENCES

VOLATILES

Analysis date/time:

GC/MS I.D.:

12-17-96/1035

D

٧D

Analyte

Cont.

trans-1,3-Dichloropropene

-36.8

ASSOCIATED SAMPLES AND BLANKS

Cont. 12-17-96/1035: YX322, YX324 through YX326, YX329, YX331 through YX333, YX363, VBLKDP, and VHBLKDP

SEMIVOLATILES

왕D

E

Analysis date/time:

12-31-96/1411

GC/MS I.D.:

<u>Analyte</u> Cont.

Pyrene

-25.3

Di-n-octylphthalate

-28.4

ASSOCIATED SAMPLES

Cont. 12-31-96/1411: YX322, YX325, YX329, YX333, and YX363

EPA SAMPLE NO.

	11111111111	IDENTIFIED COMPO	YX322
Lab Name: ATAS,	INC.	Contract: 68-D5-0018	

Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17713.01

Sample wt/vol: 5.0

Lab Code: ATAS

(q/mL) ML

Lab File ID: D7876.D

Level: (low/med) LOW

Date Received: 12/14/96

% Moisture: not dec.

Date Analyzed: 12/17/96

GC Column: DB-624

ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

Number TICs found: 12

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1			,	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
70 70 4		=======		=====
1. 78-78-4	Butane, 2-methyl-	5.576	54	ŊJ
2. 110-54-3	Hexane	8.852	6.	NJ
3. 96-37-7	Cyclopentane, methyl-	9.756	. 7	NJ
4565 59 3	Pentane, 2,3 dimethyl-	10.710	17	IJ
5. 1638-26-2	Cyclopentane, 1,1-dimethyl-	10.945	17	NJ
6. 4516-69-2	Cyclopentane, 1,1,3-trimethy	12.217	8	UN
72613-69-6	Cyclopentane, 1,2,3-trimethy	12.805	6	LN
834462-28-7	Cyclopropane, trimethylmethy	13.005	10	LN J
9. 110-01-0	Thionhene tetrahydro-	1/ 050	12	NJ
10. 4740-00-5	Thiophene, tetrahydro-3-methy	- 16.383	22	ŊJ
11.	Unknown	17.119		J
12. 1074-17-5	Benzene, 1-methyl-2-propyl-	18.521	10	NJ
13. 95-50-1	Benzene, 1,2-dichloro-	18.768	5	NJ
14		10.700]	110
15.				
16				
16.				
10				
18.				
19.	WELLER TO THE TOTAL THE TO			
20.				
1 / 1				
44.				
43.				
24.				
1 40.				
26.				
27.				
28				
29.				
30.				
l				1

2. Common laboratory contaminant 3.,4.,7.,8. Unknown hydrocarbon 12. and 13. Substituted benzene FORM I VOA-TIC

HAD 1/28/97

OLM03.0

EPA SAMPLE NO.

			YX324
Lab Name: ATAS, INC.	Contract	: 68-D5-0018	1.1.5.2.4
Lab Code: ATAS Case No.	: 25218 SAS No.	: SDG	No.: YX323
Matrix: (soil/water) WATER		Lab Sample ID:	17703.02
Sample wt/vol: 5.0	g/mL) ML	Lab File ID:	D7875.D
Level: (low/med) LOW		Date Received:	12/13/96
% Moisture: not dec.	_	Date Analyzed:	12/17/96
GC Column:DB-624 ID: 0.53	3 (mm)	Dilution Facto	r: 1.0

Number TICs found: 2

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Soil Aliquot Volume: ____(uL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2 110-54-3 He	ntane, 3-methyl- xane	8.432	38	N.
3. 96-37-7 CY	clopentane, methyl-	9.755	67	N
5				
7		-		
9.				
1. 2.				
4.				
6				
7. 8.				
9.				
1				
3.4.				
5.				
8:				
9.				

2. Common laboratory contaminant 3. Unknown hydrocarton

FORM I VOA-TIC

HAR 1/28/97 OLMO3.0

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0018
Lab Code: ATAS Case No.: 25218	SAS No.: SDG No.: YX323
Matrix: (soil/water) WATER	Lab Sample ID: 17669.09
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: D7829.D
Level: (low/med) LOW	Date Received: 12/11/96
% Moisture: not dec	Date Analyzed: 12/12/96
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume: (uI

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 78-78-4 2. 3.	Butane, 2-methyl-	5.566	12	NJ
5				
7. 8. 9.				
11. 12. 13.				
15. 16.				
17. 18. 19. 20.				
21. 22. 23.				
24. 25. 26.				
27. 28. 29.				
30.		_		

FORM I VOA-TIC

HOB 1/28/97 000100

OLM03.0

Number TICs found: 1

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018 Lab Code: ATAS Case No.: 25218 SAS No.: SDG No.: YX323 Matrix: (soil/water) WATER Lab Sample ID: 17669.08 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: D7828.D Level: (low/med) LOW Date Received: 12/11/96 % Moisture: not dec. Date Analyzed: 12/12/96 GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Number TICs found: 2

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

:				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-1. 1825-61-2	Silane, methoxytrimethyl-	8.233		===== NJ
2.	Unknown	9.970	28	J
4				
6. 7.				
8.				
10.				
12.				
14. 15.				
16. 17.				
18.				
20.				
22.				
23.				
25.				
28.				
29				

1. Column bleed

FORM I VOA-TIC

HOB 1/28/97 OLMO3.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX322RE

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17713.01

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

EE8154.D

Level: (low/med)

Date Received: 12/14/96

% Moisture:

_____ decanted: (Y/N)____

Date Extracted: 12/16/96

Concentrated Extract Volume: 1000(uL)

LOW

Date Analyzed: 12/31/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 6.9

Number TICs found: 26

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

		r	· · · · · · · · · · · · · · · · · · ·	 ,
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======		====
1 1 1 1 1 1 1 1 1 1	UNKNOWN	4.452	36	J
-2 76-09-5	2,3-Butanediol, 2,3-dimethyl	4.621	31	J-
3. 4740-00-5	Thiophene, tetrahydro-3-meth	4.845	13-	NJ
5 500 65 6	UNKNOWN	4.998	5	J
-5. 590-67-0	Cyclohexanol, 1-methyl-	5.069	12	NJ
-6	UNKNOWN	5.096	16	J
7.	UNKNOWN	5.555	6	J
8.	UNKNOWN	6.282	6	J
9.	UNKNOWN	6.495	8	J
10.	UNKNOWN	6.539	13	J
11.	UNKNOWN	6.780	6	J
12.	UNKNOWN	6.960	8	J
13. 617-94-7	Benzenemethanol, .alpha.,.al	7.043	9	NJ
14.	UNKNOWN	7.382	11	J
15.	UNKNOWN	7.749	9	J
16.	UNKNOWN	7.903	6	J
17.	UNKNOWN	8.067	5	J
18.	UNKNOWN	8.177	8	J
19.	UNKNOWN	8.446	ا و	J
20.	UNKNOWN	9.072	8	J
21.	UNKNOWN	9.215	5	J
22.	UNKNOWN	9.462	12	J
23.	UNKNOWN .	10.227	19	J
24. 88-19-7	Benzenesulfonamide, 2-methyl	11.648	12	NJ
25. 934-34-9	2 (3H) -Benzothiazolone	11.974	38	NJ
26. 84-69-5	1,2-Benzenedicarboxylic acid	13 067	24	N.I.
27.	1,2 Demonetroarbusylle dulu			- West
28.			· ————————————————————————————————————	
29.				
30.				
50				
l — i	l			

elited 730 seconda before plenol Unknown aromatic

000297

EPA SAMPLE NO.

YX323	

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218 SAS No.: SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17669.01

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

EE8260.D

Level: (low/med) LOW

Date Received: 12/11/96

% Moisture:

_____ decanted: (Y/N)____

Concentrated Extract Volume: 1000(uL)

Date Extracted:12/12/96 Date Analyzed: 01/17/97

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 7.2

Number TICs found: 14

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

eluted >30 seconds before phenol

000335

WOOD 1/29/17 OLM03.0 ane Report for Sample :

Page:

Data file : EE8260.d

Matrix : WATER

	CAS #	Compound	R.T.	Estimated Conc.
*	112-95-8 -646-31-1	Eicosane Tetracosane UNKNOWN ALKANE	16.60 17.50 18.00	4 5 3
*-	75163-99-4	UNKNOWN ALKANE Nonadecane, 2,3-dimethyl-	18.57 19.22	6 4

Concentration Units: Water: UG/L Soil: UG/KG

401/9/a

* Unknown alkane

EPA SAMPLE NO.

YX324

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.02

Sample wt/vol: 1000

(g/mL) ML

Lab File ID:

EE8139.D

Level: (low/med)

Date Received: 12/13/96

% Moisture: _____ decanted: (Y/N)____

LOW

Date Extracted:12/16/96

Concentrated Extract Volume:

1000(uL)

Date Analyzed: 12/30/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 7.5

Number TICs found: 18

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

eluted >30 secs. before plend Phosphori acid, methylcitylene P.PI - bis(2-ethylhenyl) ester 5., and 17. found in the associated method blank

000364

HAB 1/29/97

Amane Report for Sample :

24

Page: 1

Data file : EE8139.d

Matrix : WATER

CAS #	Compound	R.T.	Estimated Conc.
* -593-45-3	-Octadecane	17.20	·
$\frac{1}{4} - 629 - 92 - 5$	- Nonadecane	18.20	12
112-95-8	Eicosane	18.80	12
55282-15-0	Docosane, 7-butyl-	19.49	. 13
1560-96-9	Tridecane, 2-methyl-	20.29	16
1560-84-5	Eicosane, 2-methyl-	22.29	16
	UNKNOWN ALKANE	23.60	15

Concentration Units: Water: UG/L

Soil: UG/KG

* found in the associated method blank

1

HARD 129/97 000007

YX325

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.12

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: EE8152.D

Level: (low/med) LOW Date Received: 12/13/96

% Moisture:

decanted: (Y/N)____

Date Extracted:12/16/96

Concentrated Extract Volume:

1000(uL)

Date Analyzed: 12/31/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 8.0

Number TICs found: 14

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	COMPOUND NAME 2-Pentanone, 4-hydroxy-4-met UNKNOWN Phosphoric acid, methylsilyl 1,6,10-Dodecatrien-3-ol, 3,7 UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN 1-Phenanthrenecarboxylic aci UNKNOWN	10.794 11.480	EST. CONC.	Q JB JB JB JB JB JB
27. 28. 29. 30.				

bluted 730 seconda (sefore plenal Phosphoric acid, methyl silylane P.P'- bis (2-thylhenyl) ester ne d in the associated method blank Dode catrière

000402

FORM I SV-TIC

OLM03.0

ane Report for Sample :

25

Page:

Data file : EE8152.d

Matrix : WATER

////Estimated

	CAS #	Compound	R.T.	Estimated Conc.
*	-629-99-2 112-95-8 -1560-86-7	UNKNOWN ALKANE 2-Methyloctadecane Pentacosane Eicosane Nonadecane, 2-methyl- Octadecane Heptadecane, 2-methyl- Tetratetracontane UNKNOWN ALKANE UNKNOW ALKANE	16.27 16.74 17.18 17.65 18.18 18.77 19.45 20.25 21.17 22.26	45555888897

Concentration Units: Water: UG/L Soil: UG/KG

* found in the associated method blank

129197 1-195

198

EPA SAMPLE NO.

YX326	

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.05

Sample wt/vol: 1000

(g/mL) ML

EE8142.D Lab File ID:

Level: (low/med)

Concentrated Extract Volume:

Date Received: 12/13/96

% Moisture:

LOW

Date Extracted: 12/16/96

decanted: (Y/N)

1000 (uL)

Date Analyzed: 12/30/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 7.6

Number TICs found: 8

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER COMPOUND NAME RT EST. CONC.	Q ======
1 102 40 0	: =====
1 2 20110110110 1 11 100	NJB NJB
3. UNKNOWN 11.762 5	
-5. UNKNOWN 13.688	- UB
-6. UNKNOWN 14.836	, , , , , , , , , , , , , , , , , , ,
7. UNKNOWN 15.049	J
- 8. UNKNOWN 15 780 1/	
9.	
10	-
11	-
12	-
13.	- I
14.	
15.	
16.	
17.	
18.	
19.	
20	
22	.
	.
23. 24.	
25.	
26.	
27.	<u> </u>
28.	.
29.	.
30.	.
	.

1. eluted >30 seconds before phenol 2. Unknown

4.76. and 8. found in the associated nethod blank

129/9⁷ 00043**7**

kane Report for Sample: 326

Page:

Data file : EE8142.d

Matrix : WATER

CAS #	Compound	R.T.	Estima Conc	
593-45-3 * _	Octadecane INKNOWN ALKANE	17.68 18.21		5
112-95-8 1120-21-4	Eicosane Undecane Unknown alkane UNKNOWN ALKANE	18.80 19.49 22.31	,	7 7

Concentration Units: Water: UG/L

Soil: UG/KG

* found in the associated nethod blank

EPA SAMPLE NO.

YX328	
-------	--

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218

SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Sample wt/vol: 1000

(g/mL) ML

Lab File ID:

EE8265.D

Level: (low/med)

Date Received: 12/11/96

Lab Sample ID: 17669.09

% Moisture: _____ decanted: (Y/N)____

LOW

Date Extracted: 12/12/96

Concentrated Extract Volume:

Date Analyzed: 01/17/97

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 7.4

1000(uL)

Number TICs found: 7

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	========	=====
2.	2-Pentanone, 4-hydroxy-4-met	4.304 5.153	3	- NJ
3.	UNKNOWN	5.294	2	J
4.	UNKNOWN	5.903	5	J
5.	UNKNOWN	13.519	3	Ĵ
6. 7 4600 04	UNKNOWN	15.424	3	J
7. <u>4602-84-</u> 8.	2,6,10-Dodecatrien-1-ol, 3,7	17.774	5	NJ
9.		-		l
10.		·		
⊥ ⊥.		-		
12.			·	
13.				
14.				
16.		-		
17.		-		
18.		-		
19.		·		
20.				
21.		-		
22.				
23.				
25.				
26.		-		
27.		· 		
28.				
29.		· 		
30.				

>30 seconds before phenol

Unknown 7.

129197 000484

FORM I SV-TIC

OLM03.0

Ane Report for Sample :

28

Page: 1

Data file : EE8265.d

Matrix : WATER

CAS #	Compound		R.T.	Estimated Conc.
544-85-4 112-95-8	UNKNOWN ALKANE Dotriacontane Eicosane UNKNOWN ALKANE		16.14 17.04 17.50 18.00	3 5 4 4

Concentration Units: Water: UG/L S

Soil: UG/KG

Kellalm

LK9

1/29/97 JP-19-97

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE! TENTATIVELY IDENTIFIED COMPOUNDS

YX329RE

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

EE8156.D

Level: (low/med)

LOW

Date Received: 12/13/96

% Moisture: ____ decanted: (Y/N)___

Date Extracted:12/16/96

Lab Sample ID: 17703.01

Concentrated Extract Volume: 1000(uL) Date Analyzed: 12/31/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 6.7

Number TICs found: 16

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1	<u></u>	<u> </u>		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======		=====
1. 123-42-2	2 Pentanone, 4-hydroxy-4-met	4.440	 	JD
2. 617-94-7	Benzenemethanol, .alpha.,.al	7.045	2	J
_3,	UNKNOWN	13.480	<u> </u>	
-4.	UNKNOWN	13 660	3	JP.
5.	UNKNOWN	14.441	15	Ţ
-6	UNKNOWN	14 912	10	тв.
7.	UNKNOWN	14.907	4	JB JB JJ
8.	UNKNOWN	15.016	1 7	يرد ا
9.	UNKNOWN	15.656	<u>ر</u> (Ų
	INKNOMI	15.656	4	J. C
11. 1740-19-8	1-Phenanthrenegarboxylic aci	15.924		NJ
12.		1	4	
	UNKNOWN	16.192	5	J
	Heptadecane, 9-octyl-	16.739	4	NJ
14. 544-76-3	Hexadecane	17.188 -	4	NJ
15. 112-95-8	Eicosane	17.658	4	NJ
16.629-92-5	Nonadecane	18.183	8-	NJ.
17.				,
18.				
19.				
20.				
21.				
22.				
23.				
24				
24.				
25.				
26.				
27.				·
28.				
29.				
30				
	·			

1. eluted >30 seconds before plend

2. Benzenemethanol, alpha, alpha. Limethyl3., 4., 6., and 10. found in the associated method blank
11. 1-Phenanthrene onbosylic acid, 1, 2, 3, 4, 4a, 9, 10, 10a-sets hydro-1, 4a-dinchyl-7, 100

See alkane report

FORM I SV-TIC

ane Report for Sample : 29KE Page: 1

Data file : EE8156.d

Matrix : WATER

CAS #	Compound		Cond.
7225-64-1 * -544-76-3	Heptadecane, 9-octyl- Hexadecane	16.73 17.18	4
# -629-92-5	Eicosane Nonadecane	17.65 18.18	4

Concentration Units: Water: UG/L Soil: UG/KG * found in the associated method blank

EPA SAMPLE NO.

	YX330	
0018		ı

Lab Name: ATAS, INC.

Contract: 68-D5-0

Lab Code: ATAS Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17669.08

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: EE8263.D

Level: (low/med) LOW

Date Received: 12/11/96

% Moisture: _____ decanted: (Y/N)____

Date Extracted: 12/12/96

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 01/17/97

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 9.6

Number TICs found: A

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

			· · · · · · · · · · · · · · · · · · ·	
CAS NUMBER	COMPOUND NAME	RT	EȘT. CONC.	Q
-1.123-42-2	2-Pentanone, 4-hydroxy-4-met	4.309	2	===== NJ
2. 57-10-3 3. 4. 5.	Hexadecanoic acid UNKNOWN UNKNOWN	13.344 13.519 17.773	4 3 13	NJ J
6. 7. 8. 9.				
10. 11. 12.				
14. 15. 16. 17.				
18. 19. 20.				
21. 22. 23. 24.				
25. 26. 27.				<u> </u>
28				
0.0.4				

eluted >30 secs. before phenol

129/19 000556

Page:

Data file : EE8140.d

Matrix : WATER

CAS #	Compound	R.T.	Estimated Conc.
638-36-8 ¥-629-59- 4	Hexadecane, 2,6,10,14-tetramethyl- Tetradecane	16.75	3
638-67-5	Tricosane	17.67	3

Concentration Units: Water: UG/L Soil: UG/KG * found in the associated method blank

HAB 2/7/97

EPA SAMPLE NO.

YX332	

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.04

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: EE8141.D

Date Received: 12/13/96

Level: (low/med) LOW

% Moisture: ____ decanted: (Y/N)___

Concentrated Extract Volume: 1000(uL)

Date Extracted:12/16/96 Date Analyzed: 12/30/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 8.7

Number TICs found: 5

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

				<u> </u>
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-1. 123-42-2	2 Dontanono 4 hadrona 4 mat	4.454	=========	=====
2	2-Pentanone, 4-hydroxy-4-met	13.685	2	NJB
3.	UNKNOWN	14.458	2 6	JB T
_4	UNKNOWN	14.834	D 0	J JB
5.	UNKNOWN	15.042	3	T
6. 7.	UNKNOWN	15.527	4	JB JB
7	UNKNOWN	15.680	4 5 16	Jø
-8.	UNKNOWN	15.773	16	
9. 10	UNKNOWN	15.953	4	J
11.				
12				
13.				
14.				
15.				
16.				
1/.				
18.				
19.				
20.				
21.				
22				
24				
25.				
26.				
27.			<u> </u>	
28.				
29.				
30.				
1 0 0 0				

1. eluted >30 seconds before shend without blank.

000584

1/29/97 1/29/97

ane Report for Sample :

Data file : EE8141.d

Matrix :

CAS #	Compound	R.T.	Estimated Conc.
	KNOWN ALKANE KNOWN ALKANE	16.76 17.20	3
	KNOWN ALKANE	17 69	1

Concentration Units: Water: UG/L Soil: UG/KG

* found in the associated method blank

HAB 2/7/97

EPA SAMPLE NO.

YX333	

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.07

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: EE8149.D

Level: (low/med) LOW

Date Received: 12/13/96

% Moisture: ____ decanted: (Y/N)__

Date Extracted: 12/16/96

Concentrated Extract Volume:

Date Analyzed: 12/31/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 8.2

1000(uL)

Number TICs found: &

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123-42-2		=======	========	====
7 143-4-4-4	2-Pentanone, 4-hydroxy-4-met	4.437	3-	
<u> </u>	UNKNOWN	13.665		
3.	UNKNOWN	14.814	6	
4.	UNKNOWN	15.659	. 2	
5	UNKNOWN	15.757	9	
6.	UNKNOWN	17 943	·	
7.	01111101111	- 1-7-1-U		
8.				
9.		·		
0.				
1				
2.				
3.				
4.				
5.				
6.				
·				
7.				
8.				
9.		-		
0.				
1				
2				
2				
3				
4				
5.				
6.	,			
7				
o •				
8.				
9.				-
0.				

1. elited >30 seconds before phenol 2., 3., 5., and 6. found in the associated method blank

129/97 WARD 1/29/97

FORM I SV-TIC

EPA SAMPLE NO.

YX363

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 25218 SAS No.:

SDG No.: YX323

Matrix: (soil/water) WATER

Lab Sample ID: 17703.06

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: EE8158.D

Level: (low/med)

Date Received: 12/13/96

% Moisture:

decanted: (Y/N)____

Date Extracted: 12/16/96

Concentrated Extract Volume:

LOW .

1000(uL)

Date Analyzed: 12/31/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: 7.0

Number TICs found: 12

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

				I
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 123-42-2	2-Pentanone, 4-hydroxy-4-met	4 433		NJB
2. 3. 95-16-9 4. 544-63-8	UNKNOWN Benzothiazole Tetradecanoic acid	6.042 8.516 13.476	4 2 7	J NJ NJ
-5.	UNKNOWN	13.661	4	JB
6. 57-11-4 7.	Octadecanoic acid	14.611 14.813	3	NJ JB
-8-	UNKNOWN	15 753	7	TR
9. 603-11-2	1,2-Benzenedicarboxylic acid	16.649	11	NJ
10. <u>4128-17-0</u> 11.	2,6,10-Dodecatrien-1-ol, 3,7 UNKNOWN	17.936 18.029	10 4	NJ JB
12.				
14.				
16.				
18.	``			<u> </u>
20. 21. 22.				
23.				
25. 26.				
27.		· · · · · · · · · · · · · · · · · · ·		
29.				

1. elited 730 peronds before phenol. 4. 5., 7., and 8. found in the associated method blank

FORM I SV-TIC

000616

OLM03.0

ane Report for Sample :

63

Page: 1

Data file : EE8158.d

Matrix : WATER

CAS #	Compound	AM R.T.	Estimated Conc.
629-92-5 * 112-95-8	UNKNOWN ALKANE Nonadecane Eicosane	(6 47 15.31 16.74 17.18	4 7 ———————————————————————————————————
13287-23-5 * -638-67-5	Heptadecane, 8-methyl- Tricosane	17.65	10 25
630-03-5 629-99-2 630-06-8 13287-24-6 55333-99-8 646-31-1 3386-33-2	Nonacosane Pentacosane Hexatriacontane Nonadecane, 9-methyl- Eicosane, 7-hexyl- Tetracosane Octadecane, 1-chloro-	18.77 19.45 20.24 21.16 22.25 23.52 25.03	25 28 28 32 25 24

Concentration Units: Water: UG/L Soil: UG/KG

* found in the associated method blank

1. g. 9>

1-19-97 JP 000013B

TPO: []FYI

[X] Attention

[]Action

Region 9

ORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>25218 Memo #01</u>	LABORATORY ATAS
SDG NO. YX323	SITE NAME Victoria Golf Course
SOW OLMO3.2	REVIEW COMPLETION DATE February 10, 1997
REVIEWER [] ESD [X] ESAT	REVIEWER'S NAME <u>Dina David-Bailey</u>
NO. OF SAMPLES 12 WATER	SOILOTHER
	VOA BNA PEST OTHER
1. HOLDING TIMES/PRESERVATION	_ 0 _ 0
2. GC-MS TUNE	
3. INITIAL CALIBRATIONS	<u> </u>
4. CONTINUING CALIBRATIONS	<u>x</u> <u>x</u>
5. FIELD QC	<u>x</u> <u>x</u>
6. LABORATORY BLANKS	<u>x</u> <u>o</u>
7. SURROGATES	
8. MATRIX SPIKE/DUPLICATES	<u> </u>
9. REGIONAL QC	N/A N/A
10. INTERNAL STANDARDS	<u> </u>
11. COMPOUND IDENTIFICATION	_ 0 _ 0
12. COMPOUND QUANTITATION	_ 0 _ 0
13. SYSTEM PERFORMANCE	_ o _ o
14. OVERALL ASSESSMENT	<u>x</u> <u>x</u>

TPO ACTION: None.

TPO ATTENTION: (1) Several volatile results are qualified as nondetected and estimated (U,J) due to contamination in the storage blank. (2) Several results are estimated (J) due to calibration problems. (3) Several semivolatile results are estimated (J) due to low internal standard areas.

AREAS OF CONCERN: None.

O = Data have no problems or problems that do not affect data quality.

X = Data are qualified due to minor problems.

M = Data are qualified due to major problems.

Z = Data are unacceptable.

N/A = Not Applicable

In Reference to Case No(s).: 25218 Memo #01

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

	Date of Call:	January 31, 1997	
	Laboratory Name:	ATAS	
	Lab Contact:	Ruseal Brewer	
	Region:	9	
: : :	Regional Contact:	Dina David-Bailey, ESAT/Lockheed	
	Call Initiated By:	Laboratory X Region	
		ollowing sample(s): 28 through YX333, and YX363 (SDG No.	YX323)
Summary of	Ouestions/Issues Di	agused.	1,4 9 9 9

- The instrument performance check data for the 12/27/96 @ 1400 run were not included in the data package. Although not associated with this SDG, note that the instrument performance check data for the 12/27/96 @ 1029 were included in the data package. Please provide the missing data.
- Sample mass spectrum for a tentatively identified alkane at a retention time (RT) of 19.49 minutes was not provided for sample YX326. The alkane report for sample YX326 (see page 000009) lists the alkane as undecane, CAS # 1120-21-4. Please clarify.
- 3. Sample mass spectrum for tetradecane at RT=17.20 minutes was provided (see page 580) for sample YX331. However, this alkane was not included in the alkane report for sample YX331. Please clarify.
- Sample mass spectrum for alkanes were provided on pages 598-600 for sample YX332. However, no alkane report was submitted for sample YX332. Please clarify.

Summary of Resolution:

- The laboratory provided the missing instrument performance check data.
- The laboratory provided the missing sample mass spectrum. 2.
- 3.-4. The laboratory provided the alkane reports as requested.

una David-Barley

<u>1-10-97</u> Date

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Contract Laboratory Program REGION 9/LABORATORY COMMUNICATION SYSTEM CSF COMPLETENESS EVIDENCE AUDIT PROGRAM Telephone Communication Summary Form

AUDIT NO.:	2/97/13	LAB CONTACT: Ruseal Brewer
CASE NO.:	25218 Memo #01	LAB CODE: ATAS
SDG NO.: _	YX323	LAB NAME: American Technical &
	·	Analytical Services
FILENAME:	25218M01.TCS	LAB LOCATION: Maryland Heights, MO

Summary of Questions/Issues Discussed:

- (1) The Form DC-1 (Sample Log-In Sheet) on page 861 should be corrected and resubmitted for the following items:
 - (a) Item 11 (Time Received) should also list 1400, in addition to 0845. Samples YX332 and YX326 were received 12/13/96 @ 1400 according to chain-of-custody form 366647; and
 - (b) The "Remarks" column should indicate a cooler temperature of 5°C starting from sample YX363 down to sample YX325.
- (2) Please correct and resubmit a corrected last page of the Form DC-2 for the following items:
 - (a) Incorrect year (1996 instead of 1997) was entered by the QA assistant; and
 - (b) No date was entered by the document control officer.

Summary of Resolution:

- (1) The laboratory resubmitted a corrected Form DC-1.
- (2) The laboratory resubmitted a corrected last page of the Form DC-2.

Auditor, ESAT/Lockheed

Date of Contact

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Lockheed Martin Environmental Services

Environmental Services Assistance Team, Region 9

301 Howard Street, Suite 970, San Francisco, CA 94105-2241

Phone: 415-278-0570 Fax: 415-278-0588

MEMORANDUM

TO:

Rachel Loftin

Site Assessment Manager

States Planning & Assessment Office, SFD-5

THROUGH:

Rose Fong Koye /

ESAT Regional Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Jack Berges > 7

Team Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68D60005 Work Assignment No.: 9-96-0-4 Technical Direction No.: 9604112

DATE:

February 10, 1997

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 validation of the following analytical data:

SITE:

Victoria Golf Course

SITE ACCOUNT NO.:

CERCLIS ID NO.:

CAD980818926 25218 Memo #02

CASE NO.: SDG NO .:

YX341

LABORATORY: ANALYSIS:

American Technical & Analytical Services (ATAS)

Volatiles and Semivolatiles

SAMPLES:

14 Soil Samples (see Case Summary)

COLLECTION DATE:

December 9 and 10, 1996

REVIEWER:

Adriane Scheele, ESAT/Lockheed

The comments and qualifications presented in this report have been reviewed and approved by the EPA Work Assignment Manager (WAM) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Deirdre O'Leary (ESAT/Lockheed) at (415) 278-0585 or Rose Fong (QA Office/EPA) at (415) 744-1534.

Attachment

cc: Larry Marchin, TPO USEPA Region 7

TPO: []FYI

[X] Attention

[X] Action

SAMPLING ISSUES: []Yes

[X]No

97-02-10-AS-01/25218M02.RPT

Data Validation Report

Case No.:

25218 Memo #02

Victoria Golf Course

Laboratory: American Technical & Analytical Services (ATAS)

Reviewer:

Adriane Scheele, ESAT/Lockheed

Date:

February 10, 1997

I. Case Summary

SAMPLE INFORMATION:

VOA and BNA Samples: YX339 through YX348, YX351, YX352, YX355, and

YX356

Concentration and Matrix: Low Level Soil

Analysis: Volatiles and Semivolatiles

SOW: OLM03.2

Collection Date: December 9 and 10, 1996 Sample Receipt Date: December 11 and 13, 1996

Extraction Date: December 16, 1996

VOA Analysis Date: December 13, 16, and 17, 1996 BNA Analysis Date: December 27, 28, 30, and 31, 1996

FIELD QC:

Trip Blanks (TB): None Field Blanks (FB): YX331*

Equipment Blanks (EB): YX330* and YX332* (*See Additional Comments)

Background Samples (BG): YX343 through YX346 Field Duplicates (D1): YX339 and YX356

(D2): YX341 and YX355

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLKDN: YX342, YX342MS, YX342MSD, YX343, YX351, and

YX352

YX339, YX340, YX341, YX344 through YX348, VBLKDO:

YX355, and YX356

VBLKDP: VHBLKDP

SBLKEZ: YX339 through YX442, YX442MS, YX442MSD, YX443

through YX448, YX451, YX451DL, YX452,

YX452RE, YX455, and YX456

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifier Definitions for Organic Data

Review

TPO ACTION:

Quantitation limits for several semivolatile analytes in two samples are rejected (R) due to low internal standard area counts.

TPO ATTENTION:

(1) Several results are qualified as nondetected and estimated (U, J) due to contamination in method and storage blanks. (2) Several results are estimated (J) due to calibration problems. (3) Several semivolatile results in two samples are estimated (J) due to low internal standard area counts.

DL-Dilution; MS-Matrix Spike; MSD-Matrix Spike Duplicate; RE-Reanalysis; VHBLK-Storage Blank 97-02-10-AS-01/25218M02.RPT

SAMPLING ISSUES:

None.

ADDITIONAL COMMENTS:

*Equipment blanks YX330 and YX332 and field blank YX331 were collected with the samples of this sample delivery group (SDG). The results for equipment blank YX330, collected on December 9, 1996, and field blank YX331 and equipment blank YX332, collected on December 10, 1996, are located in Case 25218 Memo #01, SDG YX323. Methylene chloride was detected in field blank YX331 and equipment blank YX332 at concentrations of 14 $\mu \rm g/L$ (14 $\mu \rm g/Kg)$ and 5 $\mu \rm g/L$ (5 $\mu \rm g/Kg)$, respectively. Di-n-butylphthalate and bis(2-ethylhexyl)phthalate were detected in equipment blank YX330 at concentrations of 0.5 $\mu \rm g/L$ (17 $\mu \rm g/Kg)$ and 1 $\mu \rm g/L$ (33 $\mu \rm g/Kg)$, respectively.

Acetone was detected in background sample YX343 at a concentration of 26 $\mu \mathrm{g}/\mathrm{Kg}$.

The Tentatively Identified Compounds (TICs) found in the samples are reported on the Form 1Es, 1Fs, and in alkane reports included in this report. The user should note that the alkane report summarizes TICs which are alkanes. No TICs were detected in the volatile fraction of samples YX339 through YX342, YX344 through YX348, YX355, and YX356.

All method requirements specified in the USEPA Contract Laboratory Program (CLP) Statement of Work (SOW) for Organic Analysis, OLM03.2, have been met. This report was prepared according to the SOW and the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

BNA

II. Validation Summary

Acc	eptable/	Comment	Acceptable/	Comment
HOLDING TIMES GC/MS TUNE/GC PERFORMANCE CALIBRATIONS FIELD QC LABORATORY BLANKS SURROGATES MATRIX SPIKE/DUPLICATES INTERNAL STANDARDS COMPOUND IDENTIFICATION	[YES] [YES] [NO] [NO] [YES] [YES] [YES] [YES]	[] [E] [C] [C] [] []	[YES] [YES] [NO] [NO] [YES] [YES]	[] [F] [D, I] [D] [] [H] [A, G]
COMPOUND QUANTITATION SYSTEM PERFORMANCE	[YES] [YES]	[B]	[YES] [YES] [YES]	[B] []

AOV

N/A = Not Applicable

III. Validity and Comments

- A. The quantitation limits for the following semivolatile target analytes are rejected due to low internal standard areas. The results are flagged "R" in Table 1A.
 - 4,6-Dinitro-2-methylphenol, N-nitrosodiphenylamine,
 4-bromophenyl phenyl ether, hexachlorobenzene, carbazole,
 benzo(b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene,
 indeno(1,2,3-cd) pyrene, dibenz(a,h) anthracene, and
 benzo(g,h,i) perylene in sample YX351

97-02-10-AS-01/25218M02.RPT

• Butylbenzylphthalate, 3,3'-dichlorobenzidine, benzo(a)anthracene, and chrysene in samples YX351 and YX352

bis(2-Ethylhexyl)phthalate in sample YX352

The internal standard areas for the samples listed above fell below the quality control (QC) advisory criteria, as shown below.

<u>Sample</u>	<u>Internal Standard</u>	<u>Area</u>	OC Limits
YX351	Phenanthrene-d ₁₀ Chrysene-d ₁₂ Perylene-d ₁₂	20247 3104 1665	46342-185368 12447-49788 6742-26966
YX352	Chrysene-d ₁₂	4798	12447-49788

The extremely low area counts reported for the internal standards indicate a severe loss of sensitivity. The results for the nondetected target analytes listed above are rejected.

Low area counts were observed in both the original and the dilution analyses of sample YX351. Sample YX352 was reanalyzed due to the low internal standard areas in accordance with SOW requirements. The results from the original analysis of sample YX352 are presented in Table 1A in order to minimize the number of rejected data points.

Internal standards, introduced into every calibration standard, blank, sample, and QC sample, monitor changes in analyte response due to matrix effects and fluctuations in instrument sensitivity throughout the analytical sequence. Internal standards are used to quantitate the concentration of target analytes and surrogate standards.

- B. The following results, denoted with an "L" qualifier, are estimated and flagged "J" in Table 1A.
 - All results below the contract required quantitation limits

Results below the contract required quantitation limits (CRQLs) are considered to be qualitatively acceptable, but quantitatively unreliable, due to the uncertainty in analytical precision near the limit of detection.

- C. The detected results for the following volatile target analytes are qualified as nondetected and estimated due to laboratory, equipment, and field blank contamination. The results are flagged "U,J" in Table 1A.
 - Methylene chloride in all of the samples

Methylene chloride was found in field blank YX331, equipment blank YX332, laboratory method blanks VBLKDN, VBLKDO, and storage blank VHBLKDP (see Table 1A and Additional Comments for concentrations). The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased according to the blank qualification rules presented below.

No positive results are reported unless the concentration of the compound in the sample exceeds 10 times the amount in any associated blank for the common laboratory contaminants or 5 times the amount for other compounds. If the sample result is greater than the CRQL, the quantitation limit is raised to the sample result (U,J). If the

sample result is less than the CRQL, the result is reported as nondetected (U,J) at the CRQL.

A laboratory method blank is laboratory reagent water or baked sand for solid matrices analyzed with all reagents, surrogates, and internal standards and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during extraction and analysis.

A storage blank is laboratory reagent water stored in a vial in the same area as the field samples. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage prior to analysis.

An equipment blank is clean water that has been collected as a sample using decontaminated sampling equipment. The intent of an equipment blank is to monitor for contamination introduced by the sampling activity, although any laboratory introduced contamination will also be present.

A field blank is clean water prepared as a sample in the field by the sampler and shipped to the laboratory with the samples. A field blank is intended to detect contaminants that may have been introduced in the field, although any laboratory introduced contamination will also be present. Contaminants that are found in the field blank which are absent in the laboratory method blank could be indicative of a field QC problem, a deficiency in the bottle preparation procedure, a difference in preparation of the laboratory and field blanks, or other indeterminate error.

- D. The detected results for the following semivolatile target analytes are qualified as nondetected and estimated due to laboratory and equipment blank contamination. The results are flagged "U,J" in Table 1A.
 - Di-n-butylphthalate in samples YX339, YX341 through YX348, YX352, YX355, and YX356
 - bis(2-Ethylhexyl)phthalate in sample YX355
 - Di-n-octylphthalate in samples YX339, YX343, YX345, YX347, YX351, and YX352

Di-n-butylphthalate was found in laboratory method blank SBLKEZ and and equipment blank YX330. Di-n-octylphthalate and bis(2-ethylhexyl)phthalate were found in laboratory method blank SBLKEZ and equipment blank YX330, respectively. (See Table 1A and Additional Comments for concentrations.) The results for the samples listed above are considered nondetected and estimated (U,J) and the quantitation limits have been increased according to the blank qualification rules presented below.

No positive results are reported unless the concentration of the compound in the sample exceeds 10 times the amount in any associated blank for the common laboratory contaminants or 5 times the amount for other compounds. If the sample result is greater than the CRQL, the quantitation limit is raised to the sample result (U,J). If the sample result is less than the CRQL, the result is reported as nondetected (U,J) at the CRQL.

E. The quantitation limits for the following volatile target analytes are estimated due to large percent differences (%Ds) in the continuing calibrations. The results are flagged "J" in Table 1A.

LOCKHEEDMARTIN

 trans-1,3-Dichloropropene in samples YX339, YX340, YX341, YX344 through YX348, YX355, YX356, method blanks VBLKDO, VBLKDP, and storage blank VHBLKDP

Percent differences of -26.0, +26.2, and -31.3 were observed for 2-butanone, bromodichloromethane, and trans-1,3-dichloropropene, respectively, in the continuing calibration performed December 16, 1996. A %D of -36.8 was also observed for trans-1,3-dichloropropene in the continuing calibration performed December 17, 1996. These values exceed the ±25.0% QC advisory validation criterion.

The continuing calibration checks the instrument performance daily and produces the relative response factors (RRFs) for target analytes that are used for quantitation.

- F. The quantitation limits for the following semivolatile target analytes are estimated due to large %Ds in the continuing calibration. The results are flagged "J" in Table 1A.
 - Pyrene and di-n-octylphthalate in sample YX340

Percent differences of -25.3 and -28.4 were observed for pyrene and di-n-octylphthalate, respectively, in the continuing calibration performed December 31, 1996. These values exceed the $\pm 25.0 \%$ QC advisory validation criterion.

- G. The detected results and quantitation limits for the following semivolatile target analytes are estimated due to low internal standard areas. The results are flagged "J" in Table 1A.
 - Hexachlorocyclopentadiene, 2,4,6-trichlorophenol,
 2,4,5-trichlorophenol, 2-chloronaphthalene, 2-nitroaniline,
 dimethylphthalate, acenaphthylene, 2,6-dinitrotoluene,
 3-nitroaniline, acenaphthene, 2,4-dinitrophenol, 4-nitrophenol,
 dibenzofuran, 2,4-dinitrotoluene, diethylphthalate,
 4-chlorophenyl phenyl ether, fluorene, 4-nitroaniline, and
 bis(2-ethylhexyl)phthalate in sample YX351
 - 4,6-Dinitro-2-methylphenol, N-nitrosodiphenylamine,
 4-bromophenyl phenyl ether, hexachlorobenzene, carbazole,
 benzo(b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene,
 indeno(1,2,3-cd) pyrene, dibenz(a,h) anthracene, and
 benzo(g,h,i) perylene in sample YX352
 - Pentachlorophenol, phenanthrene, anthracene, di-n-butylphthalate, fluoranthene, pyrene, and di-n-octylphthalate in samples YX351 and YX352

The internal standard areas for the samples listed above fell below the QC advisory criteria, as shown below.

<u>Sample</u>	Internal Standard	<u>Area</u>	OC Limits
YX351	Acenaphthene-d ₁₀ Phenanthrene-d ₁₀ Chrysene-d ₁₂ Perylene-d ₁₂	26584 20247 3104 1665	30016-120064 46342-185368 12447-49788 6742-26966
YX352	Phenanthrene-d ₁₀ Chrysene-d ₁₂ Perylene-d ₁₂	24735 4798 3422	46342-185368 12447-49788 6742-26966

The detected results and quantitation limits for the samples listed above are considered quantitatively questionable. Where the results are nondetected, false negatives may exist.

H. The matrix spike result for 2,4-dinitrotoluene in QC sample YX342MS did not meet the criteria for accuracy specified in the SOW. The percent recoveries for 2,4-dinitrotoluene are presented below.

<u>Analyte</u>	YX342MS	YX342MSD	QC limits
	%Recovery	%Recovery	%Recovery
2,4-Dinitrotoluene	100	86	28-89

The results obtained may indicate poor laboratory technique, sample nonhomogeneity, or matrix effects which may interfere with accurate analysis. Although the recovery for 2,4-dinitrotoluene in QC sample YX342MS is above the QC limits, this recovery does not indicate an analytical deficiency.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement.

I. bis(2-Ethylhexyl)phthalate was detected in field duplicate sample YX341 at a concentration of 2300 $\mu g/Kg$ but was not detected in the associated field duplicate sample YX355. A relative percent difference (RPD) value was not calculated. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, sample nonhomogeneity, method defects, or poor sampling or laboratory technique. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision.

- J. Although not detected in any associated blanks, acetone and phthalates have been commonly found as contaminants in the field and in many laboratories. The user should note that the analytes found in the samples listed below may be artifacts.
 - Acetone in samples YX339 through YX344, YX346, YX347, YX348, YX352, and YX356
 - Diethylphthalate in samples YX339 through YX348, YX351, YX355, and YX356
 - Di-n-butylphthalate in sample YX351
 - Butylbenzylphthalate in samples YX341 and YX344
 - bis(2-Ethylhexyl)phthalate in samples YX340, YX341, YX343 through YX346, YX348, YX351, and YX356

TABLE 1A

Case No.: 25218 Memo #02

Site: Victoria Golf Course

Lab.: American Technical & Analytical Services (ATAS)

Adriane Scheele, ESAT/Lockheed Reviewer:

February 10, 1997 Date:

Analysis Type: Low Level Soil Samples

for Volatiles

Concentration in $\mu g/Kg$

Satist Control SS-1-10 SS-2-10 SS-2-10 SS-2-10 SS-3-10 SS-3									·							•	
Date of Collection	Station Location	SS-1-10			SS-1-20			SS-2-10			SS-2-20			SS-3-10			
Val Compound	Sample I.D.	YX339 D1			YX340			YX341 D2			YX342			YX343 BG			
Chloromethane	Date of Collection	12/10/	12/10/96			12/10/96			i			12/9/96					
Bromomethane	Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	
Vinyl chloride	bost-bost-bost-bost-bost-bost-bost-bost-	100000000000000000000000000000000000000	doccocco		100000000000000000000000000000000000000	demonen		bacacacacacacacacacac	laterare.		process and detection and access	10000000	1600000000	Partition and accommodate	thereeved	8888888888	
Chloroethane												,		1	1		
Methylene chloride 27 U J C 35 U J C 33 U J C 16 U J C 18 U J C 18 U J C 18 U J C Actone 6 L J BJ At L J BJ At L J BJ At J J BJ At J J BJ At J J 26 J J Carbon disulfide 12 U J BJ At J BJ At J J BJ At J J BJ At J J 26 J J BJ At J J 26 J J BJ At J J BJ At J J 26 J J BJ At J BJ At J BJ At J BJ At J BJ At J BJ At J BJ At J J At J J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J At J J J At J J At J J At J J At J J At J J At J J At J J At J J At J J J At J J At J J At J J At J J At J J At J J J J	000000000000000000000000000000000000000	100000000000000000000000000000000000000	40000000		1000000000000000000000000000	december		basenenenennen sammanna	large const		SANSONO CARROLLO CARR	harana.		National Commence of the Comme	dancon		
Aceione 6 L J BJ 4 L J BJ 3 L J BJ 43 J 26 J L J BJ 44 L J BJ 3 L J BJ 43 J 26 J L J BJ 44 L J BJ 3 L J BJ 43 J 26 J L Carbon disulfide 12 U 12 U 11 U 13 U 14 U 14 U 14 U 14 U 14 U 15 U 15 U 15				С		1	С		1	С			С	1	1	C	
Carbon disulfide	NGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Annones and a second second second	Accessors	ВJ	baaceesaceeseeseeseeseesee	decessor.	±00000000000	baaannaaaannannannannann	december 2	600000000000	55555555555555555555555555		i leadachtachtach	400000000000000000000000000000000000000		199000000000000000000000000000000000000	
1,1-Dichloroethane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloroethene (total) 12 U 12 U 11 U 13 U 14 U 1,2-Dichloroethane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloroethane 12 U 12 U 11 U 13 U 14 U 2-Butanone 12 U 12 U 11 U 13 U 14 U 1,1-1-Trichloroethane 12 U 12 U 11 U 13 U 14 U Carbon tetrachloride 12 U 12 U 11 U 13 U 14 U Bromodichloromethane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloropropane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloropropane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloropropane 12 U 12 U 11 U 13 U 14 U Gis-1,3-Dichloropropane 12 U 12 U 11 U 13 U 14 U Trichloroethane 12 U 12 U 11 U 13 U 14 U Ly-7-Trichloro	Carbon disulfide	12 U	1						}					1		erene erene er	
1,2-Dichloroethene (total) 12 U 12 U 11 U 13 U 14 U 1,2-Dichloroethane 12 U 12 U 11 U 13 U 14 U 1,2-Dichloroethane 12 U 12 U 11 U 13 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 1,1-Trichloroethane 12 U 12 U 11 U 13 U 14 U 14 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 14 U 15 U 15 U 14 U 15 U	1,1-Dichloroethene	12 U			12 U			11 U			13 U			14 U			
Chloroform	1,1-Dichloroethane	12 U			12 U	1		11 U			13 U			14 U			
1,2-Dichloroethane	1,2-Dichloroethene (total)				12 U			11 U			13 U			14 U			
2-Butanone	***************************************	ennnesennnesennenennenn	december.	-0000000000	000000000000000000000000000000000000000	decessors		11 U			13 U	l		14 U			
1,1,1-Trichloroethane	1,2-Dichloroethane	12 U			12 U			11 U			13 U			14 L			
Carbon tetrachloride	551.55555.0051.005.005.005.005.005.005.0	accessor and accessors	distributes	E	ptocostococcocconneces	decenses	E	11 U	J	E	500000000000000000000000	00000000		14 U		sussasasasas	
Bromodichloromethane			1					11 U			13 U			14 U			
1,2-Dichloropropane 12 U 12 U 11 U 13 U 14 U cis-1,3-Dichloropropene 12 U 12 U 11 U 13 U 14 U Trichloroethene 12 U 12 U 11 U 13 U 14 U Dibromochloromethane 12 U 12 U 11 U 13 U 14 U 1,1,2-Trichloroethane 12 U 12 U 11 U 13 U 14 U Benzene 12 U 12 U 11 U 13 U 14 U Benzene 12 U 12 U 11 U 13 U 14 U Bromoform 12 U 12 U 11 U 13 U 14 U Bromoform 12 U 12 U 11 U 13 U 14 U 4-Methyl-2-pentanone 12 U 12 U 11 U 13 U 14 U 2-Hexanone 12 U 12 U 11 U 13 U 14 U 2-Hexanone 12 U 12 U 11 U 13 U 14 U 1,1,2,2-Tetrachloroethane 12 U 12 U 11 U 13 U 14 U 1,1,2,2-Tetrachloroethane 12 U 12 U	000000000000000000000000000000000000000	000000000000000000000000000000000000000	10000000	\$68000000000000000000000000000000000000	000000000000000000000000000000000000000	4000000	190000000000000000000000000000000000000	600000000000000000000000000000000000000	4000000		500050000000000000000000000000000000000		100000000	1888888888888888888	10000000	100000000000	
cis-1,3-Dichloropropene 12 U 12 U 12 U 11 U 13 U 14 U Trichloroethene 12 U 12 U 11 U 13 U 14 U Dibromochloromethane 12 U 12 U 11 U 13 U 14 U 1,1,2-Trichloroethane 12 U 12 U 11 U 13 U 14 U Benzene 12 U 12 U 11 U 13 U 14 U Bromoform 12 U 12 U 11 U 13 U 14 U Bromoform 12 U 12 U 11 U 13 U 14 U 4-Methyl-2-pentanone 12 U 12 U 11 U 13 U 14 U 2-Hexanone 12 U 12 U 11 U 13 U 14 U 2-Hexanone 12 U 12 U 11 U 13 U 14 U Tetrachloroethene 12 U 12 U 11 U 13 U 14 U Toluene 12 U 12 U 11 U 13 U 14 U Chlorobenzene 12 U 12 U 11 U 13 U 14 U Chlorobenzene 12 U 12 U			J	E		1	E			E					45555559		
Trichloroethene	200000000000000000000000000000000000000	Lance of the contract of the c	 		k 000000000000000000000	40000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000	0000000	100000000000000000000000000000000000000	500000000000000000000000	1000000	#88600000000000000000000000000000000000	186888888888888888888	10000000	888888888888	
Dibromochloromethane		1	1		1				1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1			
1,1,2-Trichloroethane 12 U 12 U 11 U 13 U 14 U Benzene 12 U 12 U 11 U 13 U 14 U trans-1,3-Dichloropropene 12 U J E 12 U J E 11 U J E 13 U J L U Bromoform 12 U J E 12 U J E 11 U J E 13 U J L U 4-Methyl-2-pentanone 12 U J J E J U J J U J J U J J U J U J U J	NORTH PROCESSOR STANDARD STAND	lanananan makan menganan menga	transcensor.		100000000000000000000000000000000000000	documen		kdalatatatatatatatatatata	and the second		bg000000000000000000000000000000000000			000000000000000000000000000000000000000	doccoood		
Benzene	***************************************	,	1			1		[1	1		
trans-1,3-Dichloropropene 12 U J E 12 U J E 11 U J E 13 U J E 14 U J E Bromoform 12 U J E 12 U J E 11 U J E 13 U J E 14 U J E 4-Methyl-2-pentanone 12 U J E J U J U		loccoccoccoccoccocco	00000000		\$64556666666666666666666666666666666666	\$ 2000000		000000000000000000000000000000000000000			50000000000000000000000000			1500000000000000000000000	Acres and		
Bromoform	trans-1,3-Dichloropropene	12 U	J	Е	1	1	Е			Е				7	1	proparations.	
4-Methyl-2-pentanone 12 U 12 U 11 U 13 U 14 U 2-Hexanone 12 U 12 U 11 U 13 U 14 U Tetrachloroethene 12 U 12 U 11 U 13 U 14 U 1;1,2,2-Tetrachloroethane 12 U 12 U 11 U 13 U 14 U Toluene 12 U 12 U 11 U 13 U 14 U Chlorobenzene 12 U 12 U 11 U 13 U 14 U Ethylbenzene 12 U 12 U 3 L J B 13 U 14 U Styrene 12 U 12 U 11 U 13 U 14 U Xylene (total) 12 U 12 U 13 U 14 U		12 U			:	documents.		bissioniageneeneeneer			vananceaceacean contractor	- location and		descentamentamentamentamen	decreased		
2-Hexanone 12 U 12 U 11 U 13 U 14 U 14 U 15 U 15 U 16 U 17 U 17 U 17 U 18 U 18 U 18 U 18 U 18	4-Methyl-2-pentanone	12 U										1		1	1	eracearearea	
1,1,2,2-Tetrachloroethane 12 U 12 U 11 U 13 U 14 U Toluene 12 U 12 U 11 U 13 U 14 U Chlorobenzene 12 U 12 U 11 U 13 U 14 U Ethylbenzene 12 U 12 U 3 L J B 13 U 14 U Styrene 12 U 12 U 11 U 13 U 14 U Xylene (total) 12 U 12 U 13 U 13 U 14 U	2-Hexanone	12 U			12 U			11 U			13 U			bbsoboboodenneenneenne	decessor of		
Toluene	Tetrachloroethene	12 U			12 U			11 U			13 U			14 U			
Chlorobenzene 12 U 12 U 11 U 13 U 14 U Ethylbenzene 12 U 12 U 3 L J B 13 U 14 U Styrene 12 U 12 U 11 U 13 U 14 U Xylene (total) 12 U 12 U 13 U 14 U	1,1,2,2-Tetrachloroethane	12 U			12 U			11 U			13 U			14 U			
Ethylbenzene 12 U 12 U 3 L J B 13 U 14 U Styrene 12 U 12 U 11 U 13 U 14 U Xylene (total) 12 U 12 U 13 U 14 U	Toluene	harance and an experience of the contract of t		donorous var	12 U			11 U			13 U			14 U			
Styrene 12 U 12 U 11 U 13 U 14 U Xylene (total) 12 U 12 U 13 13 U 14 U	Chlorobenzene				12 U			11 U			13 U			14 U			
Xylene (total) 12 U 12 U 13 13 U 14 U	Ethylbenzene	12 U	2000000	10000000000000	12 U	000000		3 L	J	В	13 U			14 U			
			1		12 U			11 U						14 U			
Percent Solids 84 % 85 % 88 % 79 % 70 %	Xylene (total)	12 U	10000000	000000000000000000000000000000000000000	12 U	*******	00000000000	13	202222		13 U	0000000	************	14 U			
Percent Solids 84 % 85 % 88 % 79 % 70 %																	
	Percent Solids	84 %			85 %			88 %			79 %			70 %			

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

ANALYTICAL RESULTS

TABLE 1A

Case No.: 25218 Memo #02

Lab.:

Site: Victoria Golf Course

American Technical & Analytical Services (ATAS)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date: February 10, 1997 Analysis Type:

Low Level Soil Samples

for Volatiles

Concentration in $\mu g/Kg$

Station Location	SS-3-20			SS-4-10			SS-4-20			SS-5-10			SS-5-20		
Sample I.D.	YX344 BG			YX345 BG			YX346 BG			YX347			YX348		
Date of Collection	12/10/96		12/10/	12/10/96			12/10/96			12/10/96			12/10/96		
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Vál	Com
Chloromethane	12 U		energenesses	12 U	r		12 U			12 U			12 U		
Bromomethane	12 U	1		12 L			12 U			12 U			12 U		
Vinyl chloride	12 U			12 U	staniana.	00000000000	12 U	0000000	0000000000	12 U	2205500		12 U	the second	
Chloroethane	12 U	1		12 L			12 U	1		12 U			12 t		
Methylene chloride	12 U	Accelera	C	12 U	si sanasa.	С	12 U	6000000	C	13 U	. www.	С	14 L	10000000	C
Acetone	9 L	openies.	BJ	12 U			4 L		BJ	5 L	1	BJ		J	BJ
Carbon disulfide	12 U	9 0000000		12 U	derenan.	********	12 U	10000000	 	12 U	dereses.		12 L	144400000	B00000000
1,1-Dichloroethene	12 U	1		12 L			12 U	Inches to		12 U	1		12 L		
1,1-Dichloroethane	12 U	14000000		12 U	Absocias		12 U	docesses	 }	12 U	100000		12 U	9000000	
1,2-Dichloroethene (total) Chloroform	12 U	1		12 U			12 U	P		12 U 12 U			12 T	1	
1.2-Dichloroethane	12 U	odececco e		12 0	dassass		12 U 12 U	lacesano.		12 U	1000000		12 U	photosocc.	
2-Butanone	12 U		E	12 U		Е	12 U		E	12 U	1	E	12 U		E
1.1.1-Trichloroethane	12 C	doctoreo		12 t	danna.	E	12 U	0000000	E	12 U	darana.		12 t	dagggar	E
Carbon tetrachloride	12 U	1		12 U			12 U		100000000000	12 U			12 C	7	
Bromodichloromethane	12 U	40000000	E	12 t	decessor.	E	12 U	1 0000000	Е	12 U	400000	E	12 t	dana.	Е
1,2-Dichloropropane	12 U	a de santo	- 0000 00 000	12 U		100	12 U		-	12 U	100000	P300 F4 000	12 t	1	
cis-1,3-Dichloropropene	12 L	skooooo		12 t	deserves.		12 U	40000000		12 U	docesta		12 t	140000000	
Trichloroethene	12 U	9		12 U			12 U	11111111	000000000000	12 U	1		12 L		
Dibromochloromethane	12 L	1		12 L	derenant.		12 U	4000000		12 U	 40000000 		12 t	14000000	
1,1,2-Trichloroethane	12 U	r		12 U	1		12 U	1,111,111		12 U	1		12 U		
Benzene	12 U	ı		12 U			12 U	40000000		12 U			12 t	skoppoppo	
trans-1,3-Dichloropropene	12 U	J	E	12 U	J	Е	12 U		Е	12 U	J	Е	12 U	4	E
Bromoform	12 U	ı		12 U	ı		12 U			12 U			12 t		
4-Methyl-2-pentanone	12 U	ſ		12 U			12 U			12 U			12 U	r	
2-Hexanone	12 U			12 U	ı		12 U			12 U			12 t	ı	
Tetrachloroethene	12 U	ļ		12 U	ſ		12 U			12 U			12 L	ſ	
1,1,2,2-Tetrachloroethane	12 U			12 U	ı		12 U			12 U			12 t		
Toluene	12 U	distribution.	-0.000000000000000000000000000000000000	12 U			12 U			12 U			12 L	r	
Chlorobenzene	12 U			12 U			12 U			12 U			12 t		
Ethylbenzene	12 U	0000000	60000000000	12 U			12 U			12 U			12 L	<u> </u>	
Styrene	12 U			12 U			12 U			12 U			12 t		
Xylene (total)	12 U		5005000000	12 U	0000000	9000000000	12 U	000000	00000000000	12 U	000000		12 L	[000000000
		1000000	88888	,	1000000	0000000000	65555555555555555555	333000	50505000000	381818181818181818181818181818181818181		±000000000	200000000000000000000000000000000000000	3000000	505,555555
Percent Solids	81 %	 		85 %	 		80 %			80 %			82 %	1	
			333333333		188888	00000000000		183033333	20222020		1000000	1305000000	300000000000000000000000000000000000000		erennente
			\$100,000 to \$100.000	303888	::::::::::::::::::::::::::::::::::::::		(8888)	00000000		1888389	10000000			200000000	
		1													

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

Low Level Soil Samples

for Volatiles

ANALYTICAL RESULTS TABLE 1A

Analysis Type:

Case No.: 25218 Memo #02

Site: Victoria Golf Course

Lab.: American Technical & Analytical Services (ATAS)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

February 10, 1997

•

Jacon Tobliany 10			Conc	entrat	ion in μg,	/Kg			 			
Station Location	SS-7-1	10	SS-7-20		SS-9-1	0	SS-10-10		Methe	od Bla	ank	
Sample I.D.	YX35	1	YX352		YX355	5 D2	YX356 D	1	VBLKDN			
Date of Collection	12/9/9	6	12/9/96		12/9/9	6	12/10/96					
Volatile Compound	Result	Val Com	Result V	al Com	Result	Val Com	Result Va	Com	Result	Vai	Com	
Chloromethane	12 U		15 U		12 U		12 U		10 T			
Bromomethane	12 U	i l	15 U		12 U		12 U		10 t	j		
Vinyl chloride	12 U	rļ	15 U		12 U		12 U		10 T	J		
Chloroethane	12 U	ri i	15 U		12 U		12 U		10 t	j		
Methylene chloride	16 U	J C	15 U .	J C	12 U		32 U J	С	7 1		вс	
Acetone	200		34	J	12 U		3 L J	BJ	10 t	j		
Carbon disulfide	12 U	r	15 U		12 U		12 U		10 T	J		
1,1-Dichloroethene	12 U	1	15 U		12 U		12 U		10 t	ا		
1,1-Dichloroethane	12 U	rl l	15 U		12 U		12 U		10 U			
1,2-Dichloroethene (total)	12 U		15 U		12 U		12 U		10 T	ارا		
Chloroform	12 U		15 U		12 U		12 U		10 U			
1,2-Dichloroethane	12 U		15 U		12 U		12 U		10 t	ارا		
2-Butanone	12 U		15 U		12 U		12 U J	Е	10 t			
1,1,1-Trichloroethane	12 U		15 U		12 U	lauren eukouses sees er	12 U		10 t	estadoscad		
Carbon tetrachloride	12 U		15 U	2000 0000000000	12 U		12 U	100000000000	10 τ		podocopoco	
Bromodichloromethane	12 U	dataasaalaasaataa	15 U		12 U	haranan kansatan saar	12 U J	E	10 1	0010000000		
1,2-Dichloropropane	12 U		15 U	10001000000000000	12 U		12 U	100000000000000000000000000000000000000	10 T		000000000	
cis-1,3-Dichloropropene	12 U	determinal arguments	15 U		12 U	0000000 0000000000000000000000000000000	12 U		10 t	0010000000		
Trichloroethene	12 U		15 U	200000000000000000000000000000000000000	12 U		12 U	1800000000000	10 (B1000200000	
Dibromochloromethane	12 U	doceacealaceaceaca	15 U		12 U	400000000000000000000000000000000000000	12 U		10 t	000000000		
1,1,2-Trichloroethane	12 U		15 U	2000-0000000000000000000000000000000000	12 U	1000000 000000000	12 U	10000000000000	10 T			
Benzene	12 U	455666664566666666	15 U		12 U		12 U		10 t	octoroused		
trans-1,3-Dichloropropene	12 U	4	15 U	900 80000000000	12 U	*******	12 U J	Е	10 T		\$5500000000000000000000000000000000000	
Bromoform	12 U	december languages	15 U		12 U	annonen annonennen	12 U		10 t	oskoooood		
4-Methyl-2-pentanone	12 U		15 U	2003/20020202020	12 U		12 U	1000000000	10 U			
2-Hexanone	12 U	dopposo kosecenso	15 U		12 U		12 U		10 t	50,000,000		
Tetrachloroethene	12 U		15 U		12 U		12 U	1000000000	10 t			
1,1,2,2-Tetrachloroethane	12 U	decision de la companya	15 U		12 U		12 U	.	10 t	Salarana d		
Toluene	30		15 U		12 U		12 U	10000000	10 t			
Chlorobenzene	12 U		abaaaaaaaaaaaaaaaaannaalkuur		processors and annual expension		service en accompanion de la companion de la c	ļ.		and the second		
Ethylbenzene	79		15 U		12 U		12 U		10 t	1 1		
Styrene	79 12 U		15 U		12 U	-0000000 -0000000000000	12 U		10 U	ed-cocced		
Styrene Xylene (total)			15 U		12 U		12 U		10 t			
Ayiene (total)	190		15 U		12 U		12 U	 	10 U	Л 		
n			1	883 88800000000							RESERVE (1980)	
Percent Solids	84 %		68 %		85 %		85 %		N/A			
								10000000			96964964	
								1				
•	 			220 220 2400 20	555555555555566644444444			300000000		2000000	1000000000	
			1					les established				

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

ANALYTICAL RESULTS TABLE 1A

Case No.: 25218 Memo #02

Site: Victoria Golf Course

American Technical & Analytical Services (ATAS) Lab.:

Reviewer: Adriane Scheele, ESAT/Lockheed

Date: February 10, 1997 Analysis Type:

Low Level Soil Samples

for Volatiles

Concentration in µg

Sample I.D.	Metho VBLK		nk	CRQL	CRQL						·				;
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Chloromethane	10 U	200000000	000000000	10											
Bromomethane	10 U	1		10											
Vinyl chloride	10 U	the state of the	4000000000	10	10000000	0000000000	145474 (CONTON TO TO TO TO TO TO TO TO TO TO TO TO TO	anara.	and the second s	505050000000000000000000000000000000000	-0100000			300000000	
Chloroethane	10 U			10											
Methylene chloride	4 L	J	BC	10	12000000	65000000000	200000000000000000000000000000000000000	1000000	£0000000000000000000000000000000000000	050404407040000000000000		10000000000		1000000	100000000000000000000000000000000000000
Acetone	10 U			10											
Carbon disulfide	10 U	Parameter.	#88888888	10		100000000000000000000000000000000000000		100000000	120000000000		1888888	\$949.0880.080		8000000	H 2000 000 000 000 000 000 000 000 000 0
1,1-Dichloroethene	10 U			10											
1,1-Dichloroethane	10 U	transcent.		10				000000	10000000000		10000000				100000000000000000000000000000000000000
1,2-Dichloroethene (total) Chloroform	10 U	1		10											
1,2-Dichloroethane	10 U 10 U	\$5000000		10								 			
2-Butanone	10 U	1	E	10 10											
1,1,1-Trichloroethane	10 U	transpoord.	ט	10							000000				
Carbon tetrachloride	10 U	1		10				1000000	1000000000		1808668			1000000	100000000000000000000000000000000000000
Bromodichloromethane	10 U	\$55000000	E	10											
1,2-Dichloropropane	10 U	1	0000 00 0000	10				13:3333	1000000000		100,000	100000000000000000000000000000000000000		1806666	.00000000000000000000000000000000000000
cis-1,3-Dichloropropene	10 U	00000000		10											
Trichloroethene	10 U		*********	10	0000000	00000000000	500000000000000000000000000000000000000	44444444	\$000000000	040000000000000000000000000000000000000	10000000		.	20000000	.poececcocc
Dibromochloromethane	10 U	20000000		10											
1,1,2-Trichloroethane	10 U			10											
Benzene	10 U			10											
trans-1,3-Dichloropropene	10 U	J	E	10											
Bromoform	10 U			10											
4-Methyl-2-pentanone	10 U			10											
2-Hexanone	10 U			10											
Tetrachloroethene	10 U			10											
1,1,2,2-Tetrachloroethane	10 U			10											
Toluene	10 U	Services.	000000000000	10	*****	-0000000000000000000000000000000000000									
Chlorobenzene	10 U			10											
Ethylbenzene	10 U	619-6192	80000000000	10	0,00000	01000000000	000000000000000000000000000000000000000	0000000	10000000000	000000000000000000000000000000000000000	- 0000000	00000000000		0000000	000000000000
Styrene	10 U			10											
Xylene (total)	10 U	888388	1001000000	10	1000000	5000000000		555555			33533		100000000000000000000000000000000000000	3000000	*************
			9393 93338		10000000	5000000000		303344			1000000	E1213/812071	100101001010000100000	1903333	A2002000000
					100000	200000000		(2004)			88888	100000000000000000000000000000000000000			2000000000
		333333	83888888		0000000	303388389		:3::::::	1000000000					1000000	100000000
									le di				1		

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

ANALYTICAL RESULTS

TABLE 1A

Case No.: 25218 Memo #02

Site: Victoria Golf Course

American Technical & Analytical Services (ATAS)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date:

Lab.:

February 10, 1997

Analysis Type:

Low Level Water Blanks

for Volatiles

Concentration in $\mu g/L$

Sample I.D.	Metho VBLK		ank	Storag VHBI			CRQL							•	
Volatile Compound	Result	Val	Com	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Chloromethane	10 U	december.	000000000	10 L	alleren er		10								
Bromomethane	10 U	1		10 t			10								
Vinyl chloride	10 U	danara.	10000000000	10 L	Maraza	2000000000	10	00000000	00000000000	200000000000000000000000000000000000000	10000000	-00000000000	200000000000000000000000000000000000000	00000000	
Chloroethane	10 U	1		10 T			10								
Methylene chloride	10 U	Acres esc.		7 I	14000000	BC	10	8888888	10000000000000000000000000000000000000		10000000			100000000	
Acetone Carbon disulfide	10 U	1,,,,,,,,,		10 t			10								
1,1-Dichloroethene	10 U 10 U	diserces		10 U	s language.		10	333333			883888	 			
1,1-Dichloroethane	10 U	1000000		10 t			10								
1,2-Dichloroethene (total)	10 U	dependen		10 C	Market 1999		10 10								
Chloroform	10 U	1	000000000000000000000000000000000000000	10 U			10								
1,2-Dichloroethane	10 U	decasasas		10 T	5 koobaaa		10								
2-Butanone	10 U	1	6000000000000	10 L			10	0000000	***********		100000000			1000000	20202030000
1,1,1-Trichloroethane	10 U			10 t	decessor		10								ļ.
Carbon tetrachloride	10 U			10 U			10	10100000000	6000000000000	000000000000000000000000000000000000000		************		0000000	
Bromodichloromethane	10 U			10 L	ı		10								
1,2-Dichloropropane	10 U	1		10 U	J		10						***************************************		
cis-1,3-Dichloropropene	10 U			10 t	ı		10								
Trichloroethene	10 U	described.	00000000000	10 U			10								
Dibromochloromethane	10 U			10 L			10								
1,1,2-Trichloroethane	10 U	december 1	505000000000	10 L	descess	-000000000000	10								
Benzene	10 U			10 L			10								
trans-1,3-Dichloropropene	10 U	10000000	E	10 L	Associate.	E	10			50 000000000000000000000000000000000000	10000000		555555555555555555555555		
Bromoform	10 U	1		10 L			10								
4-Methyl-2-pentanone	10 U	become	838388888	10 U	40000000	100000000000000000000000000000000000000	10	8880000	000000000000	100000000000000000000000000000000000000		50000000000	000000000000000000000000000000000000000		
2-Hexanone	10 U	1		10 U			10								
Tetrachloroethene	10 U	to a second	88888888	10 U	+565000nn	300000000000000000000000000000000000000	10	399,8333	60000000000		10000000	501000000000		2020033	600000000000000
1,1,2,2-Tetrachloroethane Toluene	10 U	1		10 U			10								
Chlorobenzene	10 U 10 U	Section 1		10 U	1000000		10	868888						2803333	200000000000000000000000000000000000000
Ethylbenzene	10 U 10 U			10 U			10								
	8666888888888888			10 U	1000000		10	8388888)						68.8348	
Styrene Xylene (total)	10 U 10 U	1 1		10 U	1		10								
Ayrone (total)	10 U			10 U			10							888888	
		1000000		S											
		5000000									1888888				
		veres 604)			ececió(35)	escreteristi.		0000000 			8838888	90650666666			200000000000000000000000000000000000000

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable, NA-Not Analyzed

TABLE 1A

Case No.: 25218 Memo #02

Victoria Golf Course

Site: Lab.:

American Technical & Analytical Services (ATAS)

Date:

Reviewer: Adriane Scheele, ESAT/Lockheed

February 10, 1997

Analysis Type: Low Level Soil Samples

for Semivolatiles

Concentra	tion :	in μg	/Kg
-----------	--------	-------	-----

Station Location	SS-1-	10	SS-1-2	0	SS-2-1	10	SS-2-2	20	SS-3-1	0	SS-3-	20	SS-4-1	.0
Sample I.D.	YX33	9 D1	YX340)	YX34	1 D2	YX34:	2	YX34:	3 BG	YX34	4 BG	YX345	5 BG
Date of Collection	12/10/	/96	12/10/9	96	12/9/9	6	12/9/9	6	12/10/	96	12/10	/96	12/10/9	96
Semivolatile Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com
Phenol	390 U	,	390 U		380 U		420 U		470 U		410 U	J	390 U	
bis(2-Chloroethyl)ether	390 T	1	390 U		380 U		420 U		470 U		410 T	j	390 U	
2-Chlorophenol	390 U		390 U		380 U		420 U		470 U		410 T	J	390 U	
3-Dichlorobenzene	390 L		390 U		380 U		420 U		470 U		410 T	J	390 U	
1,4-Dichlorobenzene	390 U	ıl l	390 U		380 U		420 U		470 U		410 U	J	390 U	
1,2-Dichlorobenzene	390 T		390 U		380 U		420 U		470 U		410 T	j	390 U	
2-Methylphenol	390 U	J	390 U		380 U		420 U		470 U		410 U	J	390 U	
2,2'-oxybis(1-Chloropropane)	390 U		390 U		380 U		420 U		470 U		410 T	J	390 U	
4-Methylphenol	390 U		390 U		380 U		420 U		470 U		410 U	J	390 U	
N-Nitroso-di-n-propylamine	390 U	1	390 U		380 U		420 U		470 U		410 T	ı l	390 U	
Hexachloroethane	390 U		390 U		380 U		420 U		470 U		410 U	J	390 U	
Nitrobenzene	390 U		390 U		380 U		420 U		470 U		410 t	J	390 U	
Isophorone	390 U		390 U		380 U		420 U		470 U		410 U]	390 U	
2-Nitrophenol	390 U		390 U		380 U		420 U		470 U		410 t	J I	390 U	
2,4-Dimethylphenol	390 U		390 U		380 U		420 U		470 U		410 U	J	390 U	
bis(2-Chloroethoxy)methane	390 U		390 U		380 U		420 U		470 U		410 1	n l	390 U	
2,4-Dichlorophenol	390 U		390 U		380 U		420 U		470 U		410 U	J	390 U	
1,2,4-Trichlorobenzene	390 U		390 U		380 U		420 U		470 U		410 L		390 U	
Naphthalene	390 U	kseppoolbes-192000}	390 U		380 U		420 U		470 U		410 U	r I	390 U	
Chloroaniline	390 U		390 U		380 U		420 U		470 U		410 L	1	390 U	
dexachlorobutadiene	390 U		390 U		380 U		420 U		470 U		410 U		390 U	
4-Chloro-3-methylphenol	390 U		390 U		380 U		420 U		470 U		410 L		390 U	
2-Methylnaphthalene	390 U		390 U		380 U		420 U		470 U		410 U	il	390 U	
Hexachlorocyclopentadiene	390 U		390 U		380 U		420 U		470 U		410 U		390 U	
2,4,6-Trichlorophenol	390 U	144014411000000000	390 U		380 U	0000000 0000000000	420 U		470 U		410 U		390 U	
2,4,5-Trichlorophenol	990 U		980 U		940 U		1000 U		1200 U		1000 L		980 U	
2-Chloronaphthalene	390 U		390 U		380 U		420 U		470 U		410 U	1	390 U	
2-Nitroaniline	990 U		980 U		940 U		1000 U		1200 U		1000 U		980 U	
Dimethylphthalate	390 U		390 U		380 U	2000000 2000000000	420 U		470 U		410 U		390 U	
Acenaphthylene	390 U		390 U		380 U		420 U		470 U		410 U		390 U	
2,6-Dinitrotoluene	390 U		390 U		380 U		420 U	200000000000000000000000000000000000000	470 U		410 U		390 U	
3-Nitroaniline	990 U		980 U		940 U		1000 U		1200 U		1000 U		980 U	

Station Location	SS-1-10	0	SS-1-20		SS-2-	10		SS-2-2	0.		SS-3-10)	SS-3-	20	SS-4-1	10
Sample I.D.	YX339	D1	YX340		YX34	1 D2		YX342	2		YX343	BG	YX34	4 BG	YX34.	5 BG
Date of Collection	12/10/9	96	12/10/96		12/9/9	96		12/9/9	6		12/10/9	6	12/10	/96	12/10/	96
Semivolatile Compound	Result	Val Com	Result V	al Com	Result	Val	Com	Result	Val	Com	Result	Val Com	Result	Val Con	Result	Val Con
Acenaphthene	390 U		390 U		380 L]		420 U			470 U		410 U	J	390 U	f
2,4-Dinitrophenol	990 U		980 U		940 L	1		1000 U			1200 U		1000 U	1	980 U	
4-Nitrophenol	990 U		980 U		940 L	J		1000 U			1200 U		1000 t	J	980 U	
Dibenzofuran	390 U		390 U		380 L	1		420 U			470 U		410 C	4	390 U	
2,4-Dinitrotoluene	390 U		390 U		380 U	J		420 U		H	470 U		410 U	ıl	390 U	
Diethylphthalate	24 L	J BJ	22 L	J BJ	23 L	. J	BJ	38 L	J	BJ	30 L	J BJ	23 I	. J BJ	26 L	J BJ
4-Chlorophenyl phenyl ether	390 U		390 U		380 L	J	5500000000	420 U	0000000		· 470 U		410 U	7	390 U	
Fluorene	390 U		390 U		380 L	1		420 U			470 U		410 t	1	390 U	
Nitroaniline	990 U		980 U		940 L	J		1000 U			1200 U		1000 t	Л	980 U	r I
4,6-Dinitro-2-methylphenol	990 U		980 U		940 E	1		1000 U			1200 U		1000 t	1	980 U	
N-Nitrosodiphenylamine	390 U		390 U		380 L	J	*********	420 U			470 U		410 U	Л	390 U	ı
4-Bromophenyl phenyl ether	390 U		390 U		380 t	1		420 U			470 U		410 t	J	390 TJ	i l
Hexachlorobenzene	390 U		390 U		380 L	J		420 U			470 U		410 U	J	390 U	,
Pentachlorophenol	990 U		980 U		940 L	1		1000 U			1200 U		1000 t	j	980 U	i I
Phenanthrene	390 U		390 U		54 L	. J	В	420 U			470 U		410 U	J	390 U	ı I
Anthracene	390 U		390 U		380 L	1		420 U			470 U		410 U	1	390 U	1
Carbazole	390 U		390 U	200000000000000000000000000000000000000	380 L	J		420 U			470 U		410 U	J	390 U	
Di-n-butylphthalate	390 U	J D	390 U		380 L	J J	D	420 U	J	D	470 U	J D	410 C	J J D	390 U	J D
Fluoranthene	390 U		390 U		38 L	, J	В	420 U			470 U		410 U	ı	390 U	
Pyrene	390 U		390 U .	F	61 L	, J	В	420 U			470 U		410 L	il I	390 U	
Butylbenzylphthalate	390 U		390 U		32 L	, J	BJ	420 U			470 U		22 L	. J BJ	390 U	
3,3'-Dichlorobenzidine	390 U		390 U		380 U	4		420 U			470 U		410 U	ı	390 U	
Benzo(a)anthracene	390 U		390 U	**********	380 U	ı l		420 U			470 U		410 U	1	390 U	
Chrysene	390 U		390 U		38 L	J	В	420 U			470 U		410 U		390 U	
s(2-Ethylhexyl)phthalate	390 U		88 L J	BJ	2300		IJ	420 U			61 L	J BJ	40 L	J BJ	49 L	J BJ
Di-n-octylphthalate	390 U	J D	390 U	F	380 U	i l		420 U			470 U	J D	410 L		390 U	J D
Benzo(b)fluoranthene	390 U		390 U		380 U	akoocoodko	0000000000	420 U			470 U		410 U	rl l	390 U	
Benzo(k)fluoranthene	390 U		390 U		380 U			420 U			470 U		410 U		390 U	
Benzo(a)pyrene	390 U		390 U		380 U			420 U		********	470 U		410 U	1	390 U	
indeno(1,2,3-cd)pyrene	390 U		390 U		380 U	1		420 U			470 U		410 U		390 U	
Dibenz(a,h)anthracene	390 U		390 U		380 U			420 U			470 U		410 U		390 U	
Benzo(g,h,i)perylene	390 U		390 U		380 U			420 U			470 U		410 L		390 U	
Percent Solids	84 %		85 %		88 %			79 %			70 %		81 %		85 %	

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1A

Case No.: 25218 Memo #02

Site: Victoria Golf Course

Lab.: American Technical & Analytical Services (ATAS)

Reviewer: Adriane Scheele, ESAT/Lockheed

Date: February 10, 1997

Analysis Type: Low Level Soil Samples

for Semivolatiles

Concentrati	lon 1	n µg	J/Kg
-------------	-------	------	------

																	
Station Location	SS-4-2	20	SS-5-1	10	SS-5-2	20	SS-7-1	10		SS-7-2	0.		SS-9-	10		SS-10-	10
Sample I.D.	YX340	6 BG	YX34	7	YX34	8 .	YX35	1		YX352	2		YX35	5 D2		YX356	5 D1
Date of Collection	12/10/	96	12/10/	96	12/10/	96	12/9/9	6		12/9/9	6		12/9/9	96		12/10/9	96
Semivolatile Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Vai	Com	Result	Val	Com	Result	Val Co	m	Result	Val Com
Phenol	410 U		410 U		400 U		9400		******	800			390 l	J		390 U	
bis(2-Chloroethyl)ether	410 U		410 U	1	400 L		390 U			480 U			390 t	J .		390 U	
2-Chlorophenol	410 U		410 U	disconsortence tenesco	400 U	I	390 U			480 U			390 t	ار		390 U	
3-Dichlorobenzene	410 U		410 U	1	400 L		390 U			480 U			390 t	J .		390 U	
1,4-Dichlorobenzene	410 U		410 U		400 U	<u> </u>	29 L	J	В	50 L	J	В	390 t	J		390 U	
1,2-Dichlorobenzene	410 U		410 U	r	400 U	1	390 U			480 U			390 l	J .		390 U	
2-Methylphenol	410 U		410 U	J	400 L	J	100 L	J	В	480 U		l	390 U	J		390 U	
2,2'-oxybis(1-Chloropropane)	410 U		410 U		400 L		390 U			480 U			390 L	1		390 U	
4-Methylphenol	410 U		410 U	ı	400 U		5900			1900			390 t	յ		390 U	
N-Nitroso-di-n-propylamine	410 U		410 U	1	400 L		390 U			480 U			390 L	J		390 U	
Hexachloroethane	410 U		410 U		400 U		390 U			480 U			390 U	7		390 U	
Nitrobenzene	410 U		410 U	4	400 U		390 U			480 U			390 L	J		390 U	
Isophorone	410 U		410 U		400 U		390 U			480 U			390 t	J		390 U	
2-Nitrophenol	410 U		410 U		400 U	1	390 U			480 U			390 L)		390 U	
2,4-Dimethylphenol	410 U		410 U		400 U		390 U			480 U			390 L	ı		390 U	
bis(2-Chloroethoxy)methane	410 U		410 U		400 U		390 U			480 U			390 L	j l		390 U	
2,4-Dichlorophenol	410 U		410 U	·	400 U		390 U			480 U			390 L	7		390 U	
1,2,4-Trichlorobenzene	410 U		410 U		400 U		390 U			480 U			390 L	ri i		390 U	
Naphthalene	410 U		410 U		400 U		900			1100			390 U	ıl l		390 U	
Chloroaniline	410 U		410 U		400 U		390 U			480 U			390 L	1		390 U	
Hexachlorobutadiene	410 U		410 U		400 U		390 U			480 U			390 U	rl l		390 U	
4-Chloro-3-methylphenol	410 U		410 U		400 U		390 U			480 U			390 U	ıl l		390 U	
2-Methylnaphthalene	410 U		410 U		400 U		250 L	J	В	460 L	J	В	390 U	ri i		390 U	
Hexachlorocyclopentadiene	410 U		410 U		400 U		390 U	J	G	480 U			390 U			390 U	
2,4,6-Trichlorophenol	410 U		410 U		400 U		390 U	J	G	480 U			390 U			390 U	
2,4,5-Trichlorophenol	1000 U		1000 U		1000 U		990 U	J	G	1200 U			980 U			980 U	
2-Chloronaphthalene	410 U		410 U		400 U		390 U	J	G	480 U	.,		390 U			390 U	
2-Nitroaniline	1000 U		1000 U		1000 U		990 U	J	G	1200 U			980 U			980 U	
Dimethylphthalate	410 U		410 U		400 U		390 U	J	G	480 U			390 U			390 U	
Acenaphthylene	410 U		410 U		400 U		390 U	J	G	480 U			390 U			390 U	
2,6-Dinitrotoluene	410 U		410 U		400 U		390 U	J	G	480 U			390 U	1	anata paisi	390 U	
3-Nitroaniline	1000 U		1000 U		1000 U		990 U	j	G	1200 U			980 U			980 U	

									•				
Station Location	SS-4-2	20	SS-5-1	0	SS-5-		SS-7-1	0	SS-7-20)	SS-9-1	10	SS-10-10
Sample I.D.	YX340	6 BG	YX347	7	YX34	8	· YX351		YX352		YX35	5 D2	YX356 D1
Date of Collection	12/10/		12/10/	 	12/10	1 1	12/9/9	6	12/9/96	j	12/9/9	T	12/10/96
Semivolatile Compound	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result	Val Com	Result Val Con
Acenaphthene	410 U		410 U		400 t]	58 L	J BG	54 L	J B	390 U		390 U
2,4-Dinitrophenol	1000 U		1000 U		1000 t	4	990 U	J G	1200 U		980 U		980 U
4-Nitrophenol	1000 U	 - -	1000 U		1000 t	J	990 U	J G	1200 U	*******	980 U		980 U
Dibenzofuran	410 U		410 U		400 U	1	390 U	J G	40 L	J B	390 U		390 U
2,4-Dinitrotoluene	410 U	1	410 U	0.0000000000000000000000000000000000000	400 L	x 1 0000000100000000000	390 U	Editional concessions	480 U	******	390 U	1	390 U
Diethylphthalate	25 L	J BJ	36 L	J BJ	24 1	J BJ	78 L	J BGJ	480 U		23 L	J BJ	29 L J BJ
4-Chlorophenyl phenyl ether	410 U		410 U	10/10/10/10 00000000000	400 U	J	390 U	J G	480 U		390 U		390 U
Fluorene	410 U		410 U		400 L	J	140 L	J BG	98 L	J B	390 U		390 U
Nitroaniline	1000 U	100000000000000000000000000000000000000	1000 U		1000 L	7	990 U	J G	1200 U		980 U		980 U
4,6-Dinitro-2-methylphenol	1000 U		1000 U		1000 t	Ħ l	990 U	R A	1200 U	J G	980 U		980 U
N-Nitrosodiphenylamine	410 U		410 U		400 L	J	390 U	R A	550	J G	390 U		390 U
4-Bromophenyl phenyl ether	410 U		410 U		400 U	<i>j</i>	390 U	R A	480 U	J G	390 U		390 U
Hexachlorobenzene	410 U		410 U		400 L]	390 U	R A	480 U	J G	390 U	1	390 U
Pentachlorophenol	1000 U		1000 U		1000 t	J	390 L	J BG	1200 U	J G	980 U		980 U
Phenanthrene	410 U		410 U		400 L	յ	600	J G	490	J G	390 U		390 U
Anthracene	410 U		410 U		400 t	Д	64 L	J BG	88 L	J BG	390 U		390 U
Carbazole	410 U		410 U		400 L	<u> </u>	390 U	R A	480 U	J G	390 U		390 U
Di-n-butylphthalate	410 U	J D	410 U	J D	400 L	J J D	270 L	J BGJ	480 U	J DG	390 U	J D	390 U J D
Fluoranthene	410 U		410 U		400 L	7	120 L	J BG	240 L	J BG	390 U		390 U
Pyrene	410 U		410 U		400 L	ı	200 L	J BG	270 L	J BG	390 U		390 U
Butylbenzylphthalate	410 U		410 U		400 L	J .	390 U	R A	480 U	R A	390 U		390 U
3,3'-Dichlorobenzidine	410 U		410 U		400 L	i i	390 U	R A	480 U	R A	390 U		390 U
Benzo(a)anthracene	410 U		410 U		400 U	1	390 U	R A	480 U	R A	390 U		390 U
Chrysene	410 U		410 U		400 L		390 U	R A	480 U	R A	390 U		390 U
s(2-Ethylhexyl)phthalate	41 L	J BJ	410 U		47 L	J BJ	750	J GJ	480 U	R A	390 U	1 DI	130 L J BJ
Di-n-octylphthalate	410 U		410 U	J D	400 L		390 U	J DG	480 U	J DG	390 U		390 U
Benzo(b)fluoranthene	410 U	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	410 U		400 U		390 U	R A	480 U	J G	390 U		390 U
Benzo(k)fluoranthene	410 U		410 U		400 U	d d	390 U	R A	480 U	J G	390 U		390 U
Benzo(a)pyrene	410 U	010000000000000000000000000000000000000	410 U		400 U		390 U	R A	480 U	J G	390 U		390 U
Indeno(1,2,3-cd)pyrene	410 U		410 U		400 U		390 U	R A	480 U	J G	390 U		390 U
Dibenz(a,h)anthracene	410 U		410 U		400 U		390 U	R A	480 U	J G	390 U		390 U
Benzo(g,h,i)perylene	410 U		410 U		400 U	1	390 U	R A	480 U	J G	390 U		390 U
Percent Solids	80 %		80 %		82 %		84 %		68 %		85 %		85 %

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank

BG-Background Sample

TABLE 1A

Case No.: 25218 Memo #02

Site:

Victoria Golf Course

Lab.:

American Technical & Analytical Services (ATAS)

Date:

Reviewer: Adriane Scheele, ESAT/Lockheed

February 10, 1997

Concentration in $\mu g/Kg$

Analysis Type: Low Level Soil Samples

for Semivolatiles

Sample I.D.	Meth SBL		lank	CRQI		i															
Semivolatile Compound	Result	Va	Com	Result	Val C	om	Result	Val	Com	Result	Va	l Com	Result	Va	Com	Result	Val	Com	Result	Va	Con
Phenol	330 t	υ		330																	
bis(2-Chloroethyl)ether	330 (U		330																	
2-Chlorophenol	330 t	U		330																	
3-Dichlorobenzene	330 1	U		330																	
1,4-Dichlorobenzene .	330 [U		330																	
1,2-Dichlorobenzene	330 1	U		330																	
2-Methylphenol	330 1	U		330											,						
2,2'-oxybis(1-Chloropropane)	330 1	υ		330																	
4-Methylphenol	330 1	U		330						42		<u> </u>									
N-Nitroso-di-n-propylamine	330 (U		330																	
Hexachloroethane	330 T	ט		330				.]													2 2000000
Nitrobenzene	330 (IJ		330																	
Isophorone	330 U	IJ		330										1							22202000
2-Nitrophenol	330 t	J		330																	
2,4-Dimethylphenol	330 U	J		330										1					********************	- CALANAN	1000000
bis(2-Chloroethoxy)methane	330 t	J		330																	
2,4-Dichlorophenol	330 L	J		330																	
1,2,4-Trichlorobenzene	330 U	J		330																	
Naphthalene	330 L	7		330																	1000000
Chloroaniline	330 L	J		330																	
Hexachlorobutadiene	330 L	J		330															Adam manananananananana		100000000
4-Chloro-3-methylphenol	330 L	J		330																	
2-Methylnaphthalene	330 L	J		330												************	*********		******************		000000000
Hexachlorocyclopentadiene	330 L	J		330																	
2,4,6-Trichlorophenol	330 L	J		330												************************		100000000000	600000000000000000000000000000000000000	A \$200000	100000000
2,4,5-Trichlorophenol	830 L	J		830																	
2-Chloronaphthalene	330 U	J		330									ununununun 2000 (1900)	s.pae6565			ou r do atáció		00.000000000000000000000000000000000000	4 (1886) (1886)	105000000000
2-Nitroaniline	830 U	ı		830																	
Dimethylphthalate	330 U	1		330						anananana 00000000		k-10000000000000	···		processes (6)	>>>	2000000	*************		a (2000)	Processor.
Acenaphthylene	330 U	8 688868		330																	
2,6-Dinitrotoluene	330 U			330			v.v. 1440 1490 000 000 000				20210400000	P0000000000000000000000000000000000000		reposições 	p.000000000000000000000000000000000000			100000000000000000000000000000000000000			100000000000000000000000000000000000000
3-Nitroaniline	830 U	6 500550		830								1000000		desse			1	0.0000000	9883000000000	James J	1000000

Sample I.D.	Metho SBLK	d Blank EZ	CRQ	L										-						
Semivolatile Compound	Result	Val Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	l Com	Result	Va	Com	Result	Va	ıl Con
Acenaphthene	330 U		330																	
2,4-Dinitrophenol	830 U		830																	
4-Nitrophenol	830 U		830	<u> </u>	100 Maria (100 Maria (
Dibenzofuran	330 U		330																	
2,4-Dinitrotoluene	330 U		330					5050655555	1/1550ensbasssssssnr	00000000000					*******************					
Diethylphthalate	330 U		330																	
4-Chlorophenyl phenyl ether	330 U		330												*********					
Fluorene	330 U		330																	
-Nitroaniline	830 U		830																	
4,6-Dinitro-2-methylphenol	830 U		830																	
N-Nitrosodiphenylamine	330 U	.	330					********												
4-Bromophenyl phenyl ether	330 U		330																	
Hexachlorobenzene	330 U		330]										1
Pentachlorophenol	830 U		830																	
Phenanthrene	330 U		330																	
Anthracene	330 U		330																	
Carbazole	330 U		330																	
Di-n-butylphthalate	18 L	J BD	330																	
Fluoranthene	330 U		330																	
Pyrene	330 U		330																	
Butylbenzylphthalate	330 U		330										.							
3,3'-Dichlorobenzidine	330 U		330																	
Benzo(a)anthracene	330 U		330															,		
Chrysene	330 U		330																	
kis(2-Ethylhexyl)phthalate	330 U		330]												
i-n-octylphthalate	200 L	J BD	330																	
Benzo(b)fluoranthene	330 U		330																	100,00000
Benzo(k)fluoranthene	330 U		330																	
Benzo(a)pyrene	330 U		330										L. Johnson						AA01000000	40000000
Indeno(1,2,3-cd)pyrene	330 U		330																	
Dibenz(a,h)anthracene	330 U		330									www.commoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncommoncom	- APPARATE		ana ny kaominina dia 6000	APA00000		v.v.ooooooooooo	.000,000,000	340000000000000000000000000000000000000
Benzo(g,h,i)perylene	330 U		330																	1

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com-Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL-Contract Required Quantitation Limit

N/A-Not Applicable

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR ORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared according to the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- Indicates results which fall below the Contract Required Quantitation Limit. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				TOTALITY	LD COMPOUNI	7.5	
Lab	Name:	ATAS,	INC.		Contract:	68-D5-0018	YX343
Lab	Code:	ATAS	Case No.	: 25218	SAS No.:	SDG	No.: YX341

Matrix: (soil/water) SOIL Lab Sample ID: 17669.11

Sample wt/vol: 5.0 (g/mL) G Lab File ID: D7840.D

Level: (low/med) LOW Date Received: 12/11/96

% Moisture: not dec. 30 Date Analyzed: 12/13/96

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: (uL)

Number TICs found: % (CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1: Ur	iknown		======================================	====
2. 3.	known	8.801	11	
4				
6. 7.				
9.				
.1.				
3.				
5. ————————————————————————————————————				
7.	1			
8.				
0				
2.				
4.				
6.				
8				
0	74	-		

1. VOA target analyte

FORM I VOA-TIC

OLM03.0

000075 AS, ESAT 1129197

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX351 Contract: 68-D5-0018

Lab Name: ATAS, INC.

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.05

Sample wt/vol:

Lab Code: ATAS

Lab File ID:

D7836.D

Level: (low/med)

5.0 (g/mL) G

LOW

Date Received: 12/11/96

% Moisture: not dec. 16

Date Analyzed: 12/13/96

GC Column:DB-624

ID: 0.53

Dilution Factor: 1.0

Soil Extract Volume: ___(uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 22 21

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		 	<u> </u>	
CAS NUMBER	COMPOUND NAME	RT .	EST. CONC.	Q
1. 75 07 0 2. 110 54 3	Acetaldehyde Unknown	4.502	9	NJ
2. 110-54-3 3108-87-2 43073-66-3 5. 614676-29-0 7. 111-27-3 8. 9. 106783-92-2 11. 108-67-8 12. 1395-63-6 1499-87-6 15470-82-6 16135-01-3 17527-84-4 18.	Hexane Cyclohexane, methyl— Unknown Cyclohexane, 1,1,3—trimethyl— Unknown Heptane, 3—ethyl—2—methyl— 1—Hexanol Unknown Unknown Cyclohexane, 1,1,2,3—tetramel Benzene, 1,3,5—trimethyl— Unknown Benzene, 1 methyl—4 (1 methy— Eucalyptol—Unknown Benzene, 1,2 diethyl—Unknown Benzene, 1,2 diethyl—Unknown Benzene, 1 methyl—2 (1 methy—Unknown)	8.844 12.262 15.041 15.358 15.517 16.461 16.986 17.181 17.613 17.879 18.182 18.336 18.656 18.829 19.049 19.381 19.625	9 7 14 17 8 13 77 78 120 370 120 460 200 470 350 350 55	NJ NJ UJ UJ UJ UJ UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ UZ
19. 1195-79-5 20. 21. 22. 464-48-2 23. 24. 25. 26. 27. 28. 29.	Bicyclo[2.2.1] heptan 2 one, Unknown Unknown Bicyclo[2.2.1] heptan 2 one,	19.921 20.236 20.414 20.776	120 32 51 120	ТИ

2. common laboratory contaminant

17, 14 substituted benzene

FORM I VOA-TIC

OLM03.0

22,19 unknown

000121 AS, ESAT

OLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				ℓ			YX352
Lab	Name:	ATAS,	INC.		Contract:	68-D5-0018	

Lab Code: ATAS Case No.: 25218 SAS No.: SDG No.: YX341

Matrix: (soil/water) SOIL Lab Sample ID: 17669.04

5.0 (g/mL) GSample wt/vol: Lab File ID: D7835.D

Level: (low/med) LOW Date Received: 12/11/96

% Moisture: not dec. 32 Date Analyzed: 12/13/96

GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: Number TICs found: § 3 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 110-54-3	Hexane	8.826	9	NJ
2.80-56-8 3.0-00-0 4. 5.91-20-3	.alphaPinene Unknown Unknown Naphthalene	17.130 17.819 19.888 21.129	10 9 12 14	NJ J J
6. 7. 8. 9.				
10. 11. 12. 13.				
14. 15. 16.				
17. 18. 19. 20.				
21. 22. 23.				
24. 25. 26.				
27. 28. 29.				
30				

1. Common laboratory contaminant

5. Semivolatile target analyte.
FORM I VOA-TIC

OLM03.0

000155

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX339

Lab Code: ATAS

Case No.: 25218 SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17703.11

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8137.D

Level: (low/med) LOW

Date Received: 12/13/96

% Moisture: 16

decanted: (Y/N) N

Date Extracted:12/16/96

Concentrated Extract Volume:

Date Analyzed: 12/30/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.7

500(uL)

Number TICs found: 14 4

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123-42-2	2-Pentanone, 4-hydroxy 4 met	4.496	13000	NJB
2.	UNKNOWN I III UNKNOWN	5.208	15000	JB
-3.	UNKNOWN	5.274	260	JB
$-4. \frac{110}{13} \frac{13}{4}$	2,5 Hexanedione Unknown	5.361	94	NJ
<u> </u>	UNKNOWN	5.475	140	JB
6. 4436-75-3	3-Hexene-2,5-dione	5.562	140	UN
7. 138-86-3	Limonene Unknown	6.504	160	NJ
8.	UNKNOWN	7.593	150	JB
9. 6938-94-9 10.	Hexanedioic acid, bis(1-meth		96	NJ
10. -11.	UNKNOWN UNKNOWN	13.682	100	J
12.	CIVICIOWIN	14.835	92	JB
13.				
14.				
15.				
16.	_			
17.				
18.				
19.				
20.				
21				
22.				
23.				
24.				
25.				
26.				
27.				
29.				
30.				
JU.	1			

9. Hexanedioic acid, bis(1-methylethyl) ester

1,3,5,8,11 found in SBLKEZ. 1-4 elute before 1st semivolative target analyte, pheno1.

FORM I SV-TIC

AS, ESAT

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX340

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17703.08

Sample wt/vol:

rol: 30.0 (g/mL) G

'Lab File ID: EE8155.D

Level: (lo

(low/med) LOW

Date Received: 12/13/96

% Moisture: 15

decanted: (Y/N) N

Date Extracted:12/16/96

Concentrated Extract Volume:

500(uL)

Date Analyzed: 12/31/96

Injection Volume:

2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 9.8

Number TICs found: N 4

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-1.	UNKNOWN	4.364	92	<u> </u>
2.123-42-2	2-Pentanone, 4-hydroxy 4 met	4 404	11000	NJB
$-3 \cdot 111 \cdot 76 \cdot 2$	Ethanol, 2 butoxy	E 110	87	
-A	UNKNOWN	5.110		N-J
5. 110-13-4	ONANOWIN	5.186	150	J
J. 110-13-4	2,5-Hexanedione	5.333	120	
6.	UNKNOWN	5.453	120	JI
7.	UNKNOWN	5.535	120	J
8.	UNKNOWN	5.649	85	Ĵ
9. 5989 54 8	Cyclohexene, 1 methyl 4 (1 m	6.484	130	иJ
10.	UNKNOWN	0.404		
11. 6938-94-9	UNKNOWN	7.552	140	—ਹੋ।
11. 6938-94-9	Hexanedioic acid, bis(1-meth	10.025	100	UN
12				
13.				
±4.				
15.				
16				
<u> </u>				
17.				
18.				
19.				
20.				
21.				
21.				
22.				
43.				
24.				
25.				
22				
26.				
27.				
28.				
29.				
30.				
JU				

9. unknown

11. Hexanedioic acid, bis (1-methylethyl) ester

2,6,10 found in SBLKEZ

1-5 elute before 1st SVOA target analyte, phenol. FORM I SV-TIC

59 1-19-97 0003H9 C OLMO3.0 AS, ESAT 1/31/97

URGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX341

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.07

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8119.D

Level:

(low/med)

Concentrated Extract Volume:

LOW

Date Received: 12/11/96

% Moisture: 12

decanted: (Y/N) N

500 (uL)

Date Extracted:12/16/96

Injection Volume:

Date Analyzed: 12/27/96

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 8.6

Number TICs found: 187

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======	=========	=====
<u> </u>	UNKNOWN	4.390	380	
2: 123 42 2 	2 Pentanone, 4 hydroxy 4 met	4.537	12000	— JI
3.	UNKNOWN	5.229	140	77
4 :	UNKNOWN			- J I
5.		5.501	100	ੂ ਹੈ
	UNKNOWN	5.578	110	J)
6. -620-14-4-	Benzene, 1-ethyl-1-methyl-	5.828	120	No
7. 138-86-3	Limonene Unknown	6.526	270	N
8.	UNKNOWN	7.083		
9:	UNKNOWN		140	
	1	7.595	120	JI
10.	UNKNOWN	8.810	85	
11. 6938-94-9	Hexanedioic acid, bis(1-meth	10.069	110	N
l2. 57-10-3	Hexadecanoic acid	13.514	250	
13. 27554-26-3	1,2-Benzenedicarboxylic acid	13.514		N
	1,2-benzenedicarpoxylic acid	16.646	270	N.
L 4:	UNKNOWN	16.922	970	
L 5	UNKNOWN	- 16.966	250	
L6:	UNKNOWN	- 17.038		,
-7 :	UNKNOWN		190	
. 		17.115	710 	- J I
	UNKNOWN	- 17.198	1300	- JI
L9.				-
20.				
21.				
22.				
		-		
23.		*		
24.				
25.				
26				
27.				
28.				
9.				
0				

11. Hexanedioic acid, bis(1-methylethyl) ester

12 unknown organic acid

000352

13-18 common laboratory contaminants (phthalates) 2,3,4,9,17,18 found in SBLKEZ. FORM I SV-TIC

1-3 elute before 1st svor target analyte, phenol.

1/3/197

kane Report for Sample :

(341

Page: 1

Data file : EE8119.d

Matrix : SOIL

CAS #

Compound

R.T.

Estimated (

ι,	541 02 6 Cyclopentasiloxane, decamethyl-	7420	170
2	of of other desired from the state of the st	7.120	170-
۵.	629-59-4 Tetradecane unknown alkane	12.58	130
ο.	629-78-7 Heptadecane unknown alkane	16.77	210

Concentration Units: Water: UG/L

Soil: UG/KG

1. Laboratory artifact (column bleed) and found in SBLKEZ.

1-8-97

900005

AS, ESAT 1/31/97

EPA SAMPLE NO.

SEMIVOLATILE OKGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX342

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8131.D

Level:

(low/med)

Date Received: 12/11/96

decanted: (Y/N) N

500(uL)

Date Extracted:12/16/96

Lab Sample ID: 17669.15

% Moisture: 21 Concentrated Extract Volume:

LOW

Date Analyzed: 12/30/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 9.2

Number TICs found: 106

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	COMPOUND NAME	RT	EST. CONC.	Q
1. 123-42-2	2-Pentanone, 4 hydroxy 4 met	4 500	1 2 2 2 2	=====
2.	Unknown	4.502	12000	NJI
3:	Unknown	5.205	150	ਹ ੀ ਹੀ
-A	Unknown	5.357	140	U 1
5. 4436-75-3		5.477	160	J
	3-Hexene-2,5-dione	5.564	110	N
6. 611-14-3	Benzene, 1-ethyl-2-methyl-	5.804	150	N
7.	Unknown	6.213	260	
8138-86-3	Limonene Unknown	6.508	360	N
9. 6938-94-9	Hexanedioic acid, bis(1-meth	10.052	140	N
0.	Unknown	24.710	1400	
1				
2. "				
3.				
T .			· · · · · · · · · · · · · · · · · · ·	
J .	-			
6				
7	-			
ά •				***
8				
9.		· · · · · · · · · · · · · · · · · · ·		
U .				
⊥.				
4.				
J.				
4.				
J.	* [
6				
7				
8	-			
o 9.				
0.				

6. substituted benzene

9. Hexancdioic acid, bis (1-methylethyl) ester

1,4 found in SBLKEZ

1-3 elute before 1st SVOA target analyte, phenol. FORM I SV-TIC

000394

AS, ESAT

0.342

Page: 1

Data file : EE8131.d

Matrix : SOIL

CAS #	Compound	R.T.	Estimated Conc.
1 124-18-5 2 3 541-02-6	Decane Unknown Alkane Cyclopentasiloxane, decamethyl-	6.076 7.058 7.406	200 130 170
4. 13475-75-7 5. 112-95-8 6. 629-97-0	- Pentadecane, 8-hexyl- - Eicosane - Docosane-	13.71 14.27 14.81	180 450
7. 55124 79 3 8. 646 31 1 9. 7225 66 2	Heptadecane, 9 hexyl	15.33 15.82	740 2200 2100
10. 13287 24 6 11. 593 45 3	Nonadecane, 9 methyl Octadecane	16.30 16.76 17.20	1900 1400 1200
12. <u>544 85 4</u> 13. 7225 64 1 14. 630 06 8	- Dotriacontane - Heptadecane, 9 octyl - - Hexatriacontane	17.67 18.21 18.80	770 1000 630

Concentration Units: Water: UG/L Soil: UG/KG

3. Laboratory artifact (column loked) and found in SBLKEZ.

1,4-14 unknown alkanes

12

000006

AS, ESAT 1/31/97

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX343

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.11

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8121.D

Level: (low/med)

Date Received: 12/11/96

decanted: (Y/N) N

Date Extracted:12/16/96

% Moisture: 30 Concentrated Extract Volume:

Date Analyzed: 12/28/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 9.6

500(uL)

Number TICs found: 84

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

			·	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123 42 2	2 Dentanone 4 hadrons 4	4 506	_=========	=====
1. 125 12 2	2 Pentanone, 4 hydroxy 4 met	4.526	16000	NJAB
3: 110 13 4		5.229	170 -	JA U
3: 110 13 4	2,5-Hexanedione	5.376	110	- J
4.	UNKNOWN	5.495	150	JB JR
5.	UNKNOWN	5.577	130	ST.
6. 620 14 4	Benzene, 1-ethyl-3-methyl- Cyclohexene, 1-methyl-4-(1-m Hexanedioic acid, bis(1-meth	5.828	110	NJ
7. 5989-54-8	Cvclohexene 1-methyl-4-(1-m	6.526	290	NJ
8. 6938-94-9	Heyanedioic acid big/1 moth	10.064		
9.	mexamedicic acid, bis (1-meth	10.064	130	ИJ
9				
10				
l				
12.				
1 13.				
14.				
15.		-:		
16.				
17		*****************		
17.				
18.				
19.		——————————————————————————————————————		
20.				
21.		·		
22.				
23.				
23				
24.				
45.				
26.				
27.				
28.				
29.				1
30				1
				J

7. unknown

8. Hexanedioic acid, bis(1-methylethyl) ester 1,4 found in SBLKEZ

1-3 elute before 15+ SVOA target analyte, pheno1. FORM I SV-TIC

000429

kane Report for Sample :

0.343

Page: 1

Data file : EE8121.d

Matrix : SOIL

CAS #

Compound

R.T.

timated

1. 124 18 5 Decane Unknown alkane

Concentration Units: Water: UG/L

2. 541 02 6 Cyclopentasiloxane, decamethyl

6.094

110

Soil: UG/KG

2. Laboratory artifact (column bleed) and found in SBLKEZ.

172

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX344

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No:: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.10

Sample wt/vol:

30.0 (q/mL) G

Lab File ID:

EE8120.D

Level: (low/med)

Date Received: 12/11/96

% Moisture: 19

decanted: (Y/N) N

Date Extracted:12/16/96

Concentrated Extract Volume:

Date Analyzed: 12/27/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.7

500(uL)

Number TICs found: 13 47

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123 42 2	2 Pentanone, 4 hydroxy 4 met	4.521		37.73.7
2.	UNKNOWN	5.228		NJA
3	UNKNOWN	,	120	J
4. 110 13 4	2,5 Hexanedione	5.294	240	<u>_</u>
<u> </u>	UNKNOWN	5.381	82	
6. 620 14 4	Olykhowk	5.501	120	J.
	Benzene, 1 ethyl 3 methyl	5.827	110	. N
7.	UNKNOWN	6.236	91	
8. 138 86 3	Limonene unknown	6.525	240	N
9.	UNKNOWN	7.081	120	
0.	UNKNOWN	7.604	120	J
1. 6938-94-9	Hexanedioic acid, bis(1-meth	10.065	120	N
2. 57-10-3	Hexadecanoic acid	13.513	120	N
3.	UNKNOWN	13.704	97	
4.	01.12.07.11	13.704	9/	
5	-			
6	· · · · · · · · · · · · · · · · · · ·			
·				
7				
0.				
J .				
U .				
⊥ .			· · · · · · · · · · · · · · · · · · ·	
4.				•
3				
4.	-			
<u> </u>				
5				
O .				
7.				
8				
9.				
0.				
	. 1			

6. Substituted benzene

11. Hexanedioic acid, bis(1-methylethyl) ester

12. unknown organic acid

1,3,5,10 found in SBLKEZ

1-4 elute before 1st SVOA target analyte, phenol.

000452

AS, ESAT

kane Report for Sample :

(344

Page: 1

Data file : EE8120.d

Matrix : SOIL

CAS # Compound R.T. Estimated R.T. Conc.

1. 124 18 5 Decane Unknown alkane 6.094 85
2. 541 02-6 Cyclopentasiloxane, decamethyl 7.419 200

Concentration Units: Water: UG/L Soil: UG/KG

2. Laboratory artifact (column bleed) and found in SBLKEZ.

1-8-9>

000007

AS, ESAT 1/31/97

GRGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX345

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.13

Sample wt/vol:

30.0 (g/mL) G

decanted: (Y/N) N

Lab File ID: EE8123.D

Level: (low/med)

LOW

% Moisture: 15

Date Received: 12/11/96

Concentrated Extract Volume:

500 (uL)

Date Extracted:12/16/96

Injection Volume: 2.0(uL)

Date Analyzed: 12/28/96

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 9.2

Number TICs found: 12 9

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT ·	EST. CONC.	Q
1. 123 42 2	2 Pentanone, 4 hydroxy 4 met	4.526	======================================	===== A NJ
-2	UNKNOWN INJUINATION INCOME	5.228 5.495	130	Z U
4.	UNKNOWN	5 577	150 120	JB JB
5. 622-96-8 6. 5989-54-8	Benzene, 1-ethyl-1-methyl- Cyclohexene, 1 methyl 4 (1 m	5.822	100	NJ
7.	UNKNOWN	6.526 7.076	240 140	NJ
8. 9. 1526-17-6	UNKNOWN	7 616	200	JE JE J
10. 6938-94-9	%-Fluoro-%-nitrophenol Hexanedioic acid, bis(1-meth	7.763 10.066	94	NT -
11.	UNKNOWN	11.643	120 84	NO
12. 57-10-3	Hexadecanoic acid	13.512	92	NC
14.				
15 16				
17. I				
18.				
20.				
ا الم				
22				
24.				
25				
26.				
48. į			· · · · · · · · · · · · · · · · · · ·	
29.				

6. unknown

10 Hexanedioic acid, bis (1-methylethyl) ester

000481

12. unknown organic acid

1,3 found in SBLKEZ.

1-2 elute before 1st SVOA FORM I SV-TIC target analyte, pheno1.

OLM03.0 AS, ESAT kane Report for Sample :

Page:

Data file : EE8123.d

Matrix :

AM

CAS #	Compound	R.T.	Estimated (()
1. <u>121 18 5</u> 2. <u>541 02 6</u>	Decane Cyclopentasiloxane, decamethyl	6.094	100
3. <u>112-95-8</u> 4. <u>629-99-2</u> 5. <u>629-92-5</u>	Eicosane- Pentacosane- Nonadecane-	16.77 17.22 17.70	190 350 480 430
6. 55333-99-8	Eicosane, 7-hexyl	18.23	1100

Concentration Units: Water: UG/L Soil: UG/KG

2. Laboratory artifact (column bleed) and found in SBLKEZ 1,3-6. unknown alkanes

800000

AS, ESAT 1/31/97

ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX346

Lab Name: ATAS, INC.

. Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218

LOW

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.12

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8122.D

Level: (low/med)

Concentrated Extract Volume:

Date Received: 12/11/96

Date Extracted:12/16/96

% Moisture: 20

decanted: (Y/N) N

Injection Volume:

2.0(uL)

Date Analyzed: 12/28/96 Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.1

500 (uL)

Number TICs found: 127

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123 42 2 -2.	2 Pentanone, 4 hydroxy 4 met UNKNOWN	4.538 5.223	12000	==== -NJAB
3. 110-13-4 -4.	2,5-Hexanedione UNKNOWN	5.376 5.496	150 100 200	J
5. 6. 7. 620 14 4 8. 138 86 3 9.	UNKNOWN UNKNOWN Benzene, 1-ethyl-1-methyl- Limonene Unknown UNKNOWN UNKNOWN	5.578 5.697 5.823 6.521 7.077	140 110 120 280 170	JB JR J NJ NJ J
10. 11. 1526 17-6 12. 6938-94-9 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	2-Fluoro-K-nitrophenol Hexanedioic acid, bis(1-meth	7.606 7.764 10.067	160 83 120	NJ NJ

12. Hexanedivic acid, bis (1-methylethyl) ester 1,4,10 found in SBLKET 1-3 elute before 1st SVOA target analyte, phenol.

000513

FORM I SV-TIC

AS, ESAT

Page:

Data file : EE8122.d

Matrix : SOIL

RPM

CAS #

Compound

R.T.//) Estrimated

1. 124 18 5 Decane Unknown arkane

6.090

110

2.541 02 6 Cyclopentasiloxane, decamethyl

20 200

Concentration Units: Water: UG/L

Soil: UG/KG

2. Laboratory artifact (column bleed) and found in SELKET.

47.25

000009

AS ESAT 1/31/97

RGANICS ANALYSIS DATA SHE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX347

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.14

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8130.D

Level:

(low/med)

Date Received: 12/11/96

% Moisture: 20

decanted: (Y/N) N

Date Extracted: 12/16/96

Concentrated Extract Volume:

500(uL)

Date Analyzed: 12/30/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 9.3

Number TICs found: 127

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-1.123 42 2	2 Pentanone, 4 hydroxy 4 met Unknown	4.509	10000	NJB
2. 3. 110 13 4	2,5 Hexanedione Unknown	5.207 5.359	190 96	JR UN
5. 6. 7. 611 14 3 8. 138-86-3	Unknown Unknown Benzene, 1 ethyl 2 methyl Limonene Unknown	5.479 5.561 5.730 5.806	250 130 94 180	EL CZ CZ
10.	Unknown Unknown	6.505 7.574 9.518	420 160 99	NJ JB J
11. 6938-94-9 12. 57 10 3 13. 14.	Hexanedioic acid, bis(1-meth Hexadecanoic acid	10.053 13.498	140	БИ БИ
15. 16. 17.				
19				
21. 22. 23.				
24. 25. 26.				
28				
30				

7. substituted benzene

11. Hexanedioic acid, bis(1-methylethyl) ester 12 unknown organic acid

1,4,9 found in SBLKEZ

1-3 elute before 1st SVOA target analyte, phenol.

000539

OLM03.0 AS, ESAT

34

Page:

Data file : EE8130.d

Matrix : SOIL

CAS #	Compound	R.T.	Estimated Conc.
l. <u>124 18 5 1</u> 2, <u>1120 21 4 1</u> 3. <u>541 02 6</u> (Decane Unknown alkane Unknown alkane Cyclopentasiloxane, decamethyl	6.073 7.061 7.405	200 170

Concentration Units: Water: UG/L

Soil: UG/KG

3. Laboratory artifact (column bleed) and found in SBLKEZ.

(7

000010

AS, ESAT 1/31/97

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX348

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17703.10

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8136.D

Level:

(low/med)

Date Received: 12/13/96

% Moisture: 18

decanted: (Y/N) N

Date Extracted: 12/16/96

Concentrated Extract Volume:

500 (uL)

Date Analyzed: 12/30/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.3

Number TICs found: 12 6

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	======	=========	====
2. 123 42 2		4.349	220	
2. 123 12 2	2 Pentanone, 4 hydroxy 4 met- UNKNOWN	4.501	13000	- N-
4. 110 13 4		5.209	140	- No
 	2,5-Hexanedione	5.356	89	
5. 4436 55 6	UNKNOWN	5.476	120	
6. -4436 75 3	3 Hexene 2,5 dione Unknown	5.557	100	N
7.	UNKNOWN	5.672	87	-
8. -138-86-3	Limonene Unknown	6.505	180	N
9.	UNKNOWN	7.061	100	L
0 .	UNKNOWN	7.581	99	
1. 6938-94-9	Hexanedioic acid, bis(1-meth	10.049		
2. 57 10 3	Hexadecanoic acid		96	1
3	inchadecanoic acid	13.496	140	Ŋ
4 :				
5				
6				
7				
3				
· . ————				
).				
L			· · · · · · · · · · · · · · · · · · ·	
2.	-			
3.				
·				
5.				
7				
3.				
).				
).		<u> </u>		
· •	1	4		

11. Hexanedioic acid, bis (1-methylethyl)

12. unknown organic acid 2,5,10 found in SBLKEZ

1-4 elute before 1st SVOA target analyte, phenol.

FORM I SV-TIC

000564

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX351

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.05

Sample wt/vol:

Lab File ID:

EE8117.D

30.0 (g/mL) G

Level:

(low/med)

Date Received: 12/11/96

% Moisture: 16

decanted: (Y/N) N

Date Extracted:12/16/96

Concentrated Extract Volume:

500 (uL)

Date Analyzed: 12/27/96

Injection Volume:

2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) Y

pH: 7.4

Number TICs found: 24 21

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER COMPOUND NAME	RT	EST. CONC.	Q
1. 107-92-6 Butanoic acid	======	=========	=====
	4.345	5200	NJ
	4.558	27000	A NJ
4. 80 56 8 Jalpha Pinene Unknown	5.065	6300	J
	5.573	6900	NJ
5. UNKNOWN	5.835	3700	J
6. 95 36 3 1,2,4 Trimethylbenzene	6.197	5600	NJ
7. 13466-78-9 3-Carene	6.361	12000	NJ
8. 99-87-6 Benzene, 1-methyl-4-(1-methy	6.492	5800	NJ
9. 5989 54 8 Cyclohexene, 1 methyl 4 (1 m	6.542	5400	NJ
10. 470-82-6 Eucalyptol	6.619	7200	NJ
11. UNKNOWN AROMATIC	6.745	3200	J
12. 98-55-5 3-Cyclohexene-1-methanol, .a	8.150	10000	NJ
13. 99 94 5 Benzoic acid, 4-methyl-	8.854	3300	
14. 475-20 7 1,4 Methanoazulene, decahydr	10.181		NJ
15. 489 39 4 1H Cycloprop[e] azulene, deca		4800	NJ
Tele of oxopropiolations, decar	10.374	11000	NJ
- 1	10.584	4000	J
Tate of oropropies and resident	10.771	7400	NJ
- - - - - - - - - -	10.904	5100	NJ
- $ -$	11.147	6100	J
20. UNKNOWN	11.501	3600	. д
21. 57-10-3 Hexadecanoic acid	13.602	5800	ŊĴ
22. UNKNOWN	15.279	3900	J
UNKNOWN	15.751	5600	JВ
24. UNKNOWN	16.155	3100	J
25.	10.133	3100	U
26.			
27.			
28.			
29.			
30.			
8 Bentene methyl - methyletting			

8. Bentene, methyl-(methylethyl)

15, 14,9 unknown

12. 3-Cyclonexene-1-methanol, .alpha., .alpha. 4-trimethyl-

000589

8, 17, 16. substituted naphthalene unknown polynuclear aromatic hydrocarbon FORM I SV-TIC

19. unknown 21. unknown organic acid

2. found in SBLKET

cane Report for Sample :

Page: 1

Data file : EE8117.d

Matrix : SOIL

CAS #

Compound

UNKNOWN ALKANE

1120 21 112 40 3 -- Dodecane

3200

5.742 6.109 7.095

4700

8.017

8400 4600

Concentration Units: Water: UG/L Soil: UG/KG

000013

AS, ESAT 1/31/97

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX352

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.04

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8116.D

Level: (low/med)

LOW

Date Received: 12/11/96

% Moisture: 32

decanted: (Y/N) N

Date Extracted: 12/16/96

Concentrated Extract Volume:

500(uL)

Date Analyzed: 12/27/96

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.2

Number TICs found: 12/2

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 123-42-2	2-Pentanone, 4-hydroxy-4-met	4.545	21000	NJAB
2. 3. 4. 470-82-6 5. 6. 7. 98-55-5	UNKNOWN UNKNOWN Eucalyptol UNKNOWN UNKNOWN	5.831 6.531 6.597 6.920 7.353	2300 2600 1600 2100 2000	J J NJ J
8.	UNKNOWN	8.126 10.365	2700	ŊJ
9.	UNKNOWN	11.082	1800 1100	J
. 10. -57-10-3	Hexadecanoic acid	13.559	10000	NJ
11. 13481 95 3	10 Octadecenoic acid, methyl	14.589	7000	NJ
12. 57-11-4	Octadecanoic acid	14.678	3500	NJ
13.	UNKNOWN	14.767	4000	JÈ
14				
16.		·		
16				
18.				
1.J.				
44.				
22.				
		-		
24				
40.				
27.				
29.				
30.				
				i

11,7. unknown

12,10. unknown organic acid

000692

I found in SBLKEZ and elutes before 1st SVOA target analyte, phenol.

lkane Report for Sample :

Page:

Data file : EE8116.d

Matrix : SOIL

CAS #	Compound	R.T.	Estimated Conc.
$\begin{array}{c} 124 - 18 - 5 \\ 2847 - 72 - 5 \\ \hline \\ 544 - 76 - 3 \\ 629 - 97 - 0 \\ 638 - 67 - 5 \\ 646 - 31 - 1 \\ \hline \\ 7225 - 66 - 3 \\ \hline 55124 - 79 - 3 \\ \hline \\ 13475 - 75 - 7 \\ \hline \\ 630 - 01 - 3 \\ \hline \\ 7225 - 64 - 1 \\ \hline \\ 55333 - 99 - 8 \\ \hline \\ 638 - 68 - 6 \\ \hline \end{array}$	Decane Decane, 4 methyl UNKNOWN ALKANE UNKNOWN ALKANE UNKNOWN ALKANE Docosane Tricosane Tricosane Tridecane, 7 hexyl Heptadecane, 9 hexyl Pentadecane, 8 hexyl Hexacosane Heptadecane, 9 octyl Eicosane, 7 hexyl Triacontane	6.098 6.334 6.733 7.084 14.29 14.84 15.36 15.85 16.33 17.72 18.25 18.85	2200 3700 1800 3900 5000 7000 9000 9600 10000 9900 8500 8200 5900 4800
	• • • • • • • • • • • • • • • • • • • •	20.34	3100

Concentration Units: Water: UG/L Soil: UG/KG

1-8-97 RC

000014

AS, ESAT 1/31/97

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

YX355

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17669.06

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8118.D

Level:

(low/med)

Date Received: 12/11/96

% Moisture: 15

decanted: (Y/N) N

Date Extracted: 12/16/96

Concentrated Extract Volume:

500 (uL).

Date Analyzed: 12/27/96

Injection Volume:

2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.4

Number TICs found: N 4

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 123 42 2	UNKNOWN	4.395	450	J
-3.	2 Pentanone, 4 hydroxy 4 met UNKNOWN	4.553	11000	A NJB
4.	UNKNOWN	5.299	320	JB.
5. 110-13-4	2,5 Hexanedione	5.381	87	
7.	UNKNOWN UNKNOWN	5.506 5.697	160 87	JB J
8. 611-14-3	Benzene, 1-ethyl-1-methyl-	5.827	100	U UN
9. 5989-54-8	Benzene, 1-ethyl-1-methyl- Cyclohexene, 1-methyl-1-(1-m-	6.531	240	NJ
10. 11. 6938-94-9	UNKNOWN Hexanedioic acid, bis(1-meth	7.599	130	JD
12.	Unknown alkane	10.072 7.08 1	120 150	J J
1J.	Unknown alkane	11.527	130	- 5
14.	Unknown alkane	11.877	260	J
15.	unknown alkane unknown alkane	12.528	200	3
1/.	Unknown alkane	13,600	<u> 420</u> 220	J
TO.	Unknown alkane	13.737	240	
19.	Unknown alkane	14.293	310	<u> </u>
20	Unknown alkanc	14.839	140	<u>J</u>
22.	· · · · · · · · · · · · · · · · · · ·			
23.		:		
24				
26.				
27.			7	
28.				
29.				
J V				

9. unknown

Hexanedioic acid, bis (1-methylethyl) ester

2,4,6,10 found in SBLKEZ.

1-5 elute before 18+ SVOA target analyte, pheno1. FORM I SV-TIC

000800

AS, ESAT

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

YX356

Lab Code: ATAS

Case No.: 25218

SAS No.:

SDG No.: YX341

Matrix: (soil/water) SOIL

Lab Sample ID: 17703.09

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

EE8135.D

Level: (low/med)

Date Received: 12/13/96

% Moisture: 15

LOW

decanted: (Y/N) N

Date Extracted: 12/16/96

Concentrated Extract Volume: Injection Volume:

500 (uL)

2.0 (uL)

Date Analyzed: 12/30/96 Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 8.9

Number TICs found: N 4

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======	==========	=====
-1.123 42 2	 2 Pentanone, 4 hydroxy 4 met	4.497	11000	NJB
2.	Unknown	5.210	 140 -	JB
3:	Unknown	5.275	280	TD.
4. 110-13-4	2,5-Hexanedione	5.362	110	NJ
5:	Unknown	5.476	160	JB-
6.	Unknown	5.564	130	JE
7. 138-86 3	Limonene Unknown	6.506		, , , <u>, , , , , , , , , , , , , , , , </u>
-2	Unknown		110	ŊJ
9. 1526 17-6	Olikilowii	7.589	180	JB
	X-Fluoro-6-nitrophenol	7.747	84	NJ
10. 6938-94-9	%-Fluoro-%-nitrophenol Hexanedioic acid, bis(1-meth	10.054	120	NJ
-11.	Unknown	14.836	83	JB
12	,			-
I 13.				
14.				
15			<u></u>	
15.				
16.				
17.				
18.				
19.				
20.			· · · · · · · · · · · · · · · · · · ·	
21				
22				
22.				
23.				
24.				
1 23.				
26.				
27.				
28.				
29.				
30.				
	· · · · · · · · · · · · · · · · · · ·			

10. Hexanedioic acid, bis (1-methylethyl) ester 1,3,5,8,11 found in SBLKEZ.

1-4 elute before 18t SVOA target analyte, phenol.

000834

FORM I SV-TIC

OLM03.0 AS, ESAT

TPO: []FYI

[X] Attention

[X] Action

Region _9_

ORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>25218 Memo #02</u>	LABORATORY ATAS
SDG NO. YX341	SITE NAMEVictoria Golf Course
SOW OLM03.2	REVIEW COMPLETION DATE February 10, 1997
•	REVIEWER'S NAME Adriane Scheele
NO. OF SAMPLES WATER14	SOILOTHER
•	VOA BNA PEST OTHER
1. HOLDING TIMES/PRESERVATION	<u> </u>
2. GC-MS TUNE/GC PERFORMANCE	0 0
3. INITIAL CALIBRATIONS	_ 0 _ 0
4. CONTINUING CALIBRATIONS	<u>x</u> <u>x</u>
5. FIELD QC	<u>x</u> <u>x</u>
6. LABORATORY BLANKS	x
7. SURROGATES	<u> </u>
8. MATRIX SPIKE/DUPLICATES	_ 0 _ 0
9. REGIONAL QC	N/A N/A
10. INTERNAL STANDARDS	O
11. COMPOUND IDENTIFICATION	_ 0 _ 0
12. COMPOUND QUANTITATION	_ 0 _ 0
13. SYSTEM PERFORMANCE	_ 0 _ 0
14. OVERALL ASSESSMENT	x

TPO ACTION: Quantitation limits for several semivolatile analytes in two samples are rejected (R) due to low internal standard area counts.

TPO ATTENTION: (1) Several results are qualified as nondetected and estimated (\mathtt{U},\mathtt{J}) due to contamination in method and storage blanks. (2) Several results are estimated (J) due to calibration problems. (3) Several semivolatile results in two samples are estimated (J) due to low internal standard area counts.

AREAS OF CONCERN: None.

O = Data have no problems or problems that do not affect data quality.

X = Data are qualified due to minor problems.

M = Data are qualified due to major problems.

Z = Data are unacceptable.

N/A = Not Applicable

In Reference to Case No(s).:
 25218 Memo #02

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log #1

	Date of Call:	
•	Laboratory Name:	American Technical & Analytical Services (ATAS)
	Lab Contact:	Ruseal Brewer
	Region:	9
	Regional Contact:	Adriane Scheele, ESAT/Lockheed
	Call Initiated By:	Laboratory X Region
In re	ference to data for the f Sample Delivery Group (S	ollowing: DG) YX341 for Volatiles Analysis
Summa	ry of Questions/Issues Di	scussed:
The f fract	ollowing items were noted ion.	during the review of the data for the volatiles
1.	Form 5A, page 32, incorr Please submit a correcte	ectly states that a heated purge was used. d Form 5A.
2.	elutes at 7.316 minutes. an unknown elutes at 7.3	page 77, for sample YX343 states that acetone Form 1E, page 75, for sample YX343 states that 16 minutes. The extracted ion current profiles one and the unknown appear to be identical. a corrected Form 1E.
3.	identified compound (TIC Section 11.1.2.2 of Exhi	ample YX352 lists naphthalene as a tentatively) eluting at 21.129 minutes. According to bit D-38/VOA of the SOW, semivolatile target it C are not to be reported as TICs. Please 1E.
Summa	ry of Resolution:	
1-3.	Corrected Forms 1E and 5	A were received at ESAT on February 5, 1997.
		•

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

In Reference to Case No(s).:
 25218 Memo #02

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log #2

	, Da	ate of Call:	February 4,	1997
·	L	aboratory Name: _	American Tec Analytical S	chnical & Services (ATAS)
	La	ab Contact: _	Ruseal Brewe	er
	Re	egion:	9	
	Re	egional Contact: _	Adriane Sche	eele, ESAT/Lockheed
	Ca	all Initiated By:	Labor	atory <u>X</u> Region
In ref	erence (Sample I	to data for the fo Delivery Group (SI	ollowing: DG) YX341 for S	Gemivolatiles Analysis
Summar	y of Que	estions/Issues Dis	scussed:	
The for	llowing latiles	items were noted fraction.	during the rev	riew of the data for the
2. 2. 3.	was injeprovided provided prov	ected on December of on pages 925 three 27, 1996 at 10:20 ned using the raw. Please submit actively identified on the provided either. 1ting at 7.081, 7.14.293, and 14.83	27, 1996 at 14 rough 928 indicated and not compound (TIC) the Form 1F. An Please provided 425, 11.527, 19 min. in samplet for sample Y	eluting at 7.383 min. in sample alkane report for sample YX340 le appropriate documentation. 1.877, 12.528, 12.600, 13.522, the YX355 are not listed on the X355 was not provided either.
Summary	y of Res	solution:		
2-3.	were rec Alkane r	ceived at ESAT on	February 5, 19	27, 1996, 14:00 DFTPP injection 97. 355 were received at ESAT on
Distrik	oution:	Canane Schue Signature (1) Lab Copy, (2		_February 10, 1997 Date
		(-, <u>L</u> ux copy, (2	i rearon coba,	(2) CHMDD CODA

Contract Laboratory Program
REGION 9/LABORATORY COMMUNICATION SYSTEM
CSF COMPLETENESS EVIDENCE AUDIT PROGRAM
Telephone Communication Summary Form

AUDIT NO.:	2/97/9	LAB CONTACT:	Ruseal Brewer
CASE NO.:	25218 Memo #02	LAB CODE: _	ATAS
SDG NO.: _	YW341	LAB NAME:	American Analytical &
		·	Technical Services
FILENAME:	25218M02.TCS	LAB LOCATION	: Maryland Heights, MO

Summary of Questions/Issues Discussed:

The following items were noted during the audit of the complete sample delivery group file (CSF).

- 1. Remark 6 of Form DC-1, page 1049, includes airbill 279 440 5585. Since the samples shipped to the laboratory under airbill 279 440 5585 are not included in the samples listed on the Form DC-1, the airbill number should not have been included in remark 6. Please submit a corrected Form DC-1, page 1049.
- 2. Please refer to Form DC-1, page 1050. Please submit a Form DC-1, page 1050, corrected for the following observations.
 - A. Remark 11 lists the time of receipt as 0845. The chain of custody forms associated with the samples listed on Form DC-1 include two times of receipts: 0845 and 1400.
 - B. In the remarks section regarding the condition of sample shipment, a 10°C temperature is recorded for all of the samples listed. However, a 5°C temperature is recorded on the chain of custody forms for samples YX325, YX333, YX339, YX340, YX348, YX356, and YX363.
- 3. The sample transfer section of Form DC-1, page 1050, was not completed. Please complete the sample transfer section as instructed per Section 3.19 of Exhibit B-61 of the Statement of Work (SOW) in future data package submittals.
- 4. Page numbers 933 through 976 are incorrectly listed for the matrix spike/matrix spike duplicate data in Section 5.d of Form DC-2-2. The auditor has manually corrected those page numbers as 957 through 976. Please note in your records.
- 5. Samples for this sample delivery group (SDG) were provided in three shipments (airbill numbers 279 440 5574, 279 440 5784, and 279 440 6646) as indicated on the chain of custody forms on pages 17 through 19. The auditor has manually revised Section 8, Airbills, on Form DC-2-4 to reflect three shipments. Please note in your records.

Summary of Resolution:

1-2. The laboratory's response is pending as of February 10, 1997.

3-5. No further response from the laboratory is required.

Auditor, ESAT/Lockheed

January 30, 1997

Date of Contact

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

LOCKHEEDMARTIN

Lockheed Martin Environmental Services

Environmental Services Assistance Team, Region 9 301 Howard Street, Suite 970, San Francisco, CA 94105

Phone: 415-278-0570 Fax: 415-278-0588

cc. 050 26/9

MEMORANDUM

TO:

Rachel Loftin

Site Assessment Manager

States Planning and Assessment Office, SFD-5

THROUGH:

Rose Rose Fong

ESAT Regional Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Jack Berges 🤿

Team Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68D60005 Work Assignment No.: 09-96-0-4 Technical Direction No.: 9604113

DATE:

February 14, 1997

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Victoria Golf Course

SITE ACCOUNT NO.: zz

CERCLIS I.D. NO.: CAD980818926

CASE NO.:

25218 Memo #03

SDG NO.:

MYX292

LABORATORY:

Analytical Resources, Inc. (ARI)

ANALYSIS:

Total Metals

SAMPLE NO.:

6 Water and 14 Soil Samples (See Case Summary)

COLLECTION DATE:

December 9 through 12, 1996

REVIEWER:

Dina David-Bailey, ESAT/Lockheed

The comments and qualifications presented in this report have been reviewed and approved by the EPA Work Assignment Manager (WAM) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Deirdre O'Leary (ESAT/Lockheed) at (415) 278-0585, or Rose Fong (QA Office/EPA) at (415) 744-1534.

Attachment

cc: Bruce Woods, TPO USEPA Region 10

TPO: []FYI

[]Attention

[X] Action

SAMPLING ISSUES: []Yes

Data Validation Report

Case No.:

25218 Memo #03

Site:

Victoria Golf Course

Laboratory: Analytical Resources, Inc. (ARI) Dina David-Bailey, ESAT/Lockheed

Date:

February 14, 1997

I. Case Summary

SAMPLE INFORMATION:

SAMPLE #:

Water: MYX292, MYX294, and MYX297 through

MYX300

Soil:

MYX308 through MYX317, MYX320,

MYX321, MYX324, and MYX325

COLLECTION DATE:

December 9 through 12, 1996

SAMPLE RECEIPT DATE: December 13, 1996

CONCENTRATION & MATRIX: Low Concentration Groundwater and Soil

FIELD QC:

None

Field Blanks (FB): Equipment Blanks (EB):

MYX299, MYX300, MYX301*, and MYX302*

(*see Additional Comments)

Background Samples (BG):

MYX294 and MYX312 through MYX315

Duplicates (D1): MYX308 and MYX325 (D2): MYX310 and MYX324

LABORATORY OC:

Matrix Spike:

MYX292 (Water) and MYX311 (Soil)

Duplicates: MYX292 (Water) and MYX311 (Soil) ICP Serial Dilution: MYX292 (Water) and MYX311 (Soil)

ANALYSIS: Total Metals

Analyte

GFAA:

Sample Preparation and Digestion Date

Analysis <u>Date</u>

ICP Metals

December 31, 1996 and

January 9, 1997

December 31, 1996 and

January 10 and 13, 1997

Arsenic

January 2, 1997

January 10, 1997

Lead

December 31, 1996 and

January 2, 1997

January 2, 1997 December 31, 1996 and Selenium

January 9 and 10, 1997

Thallium

January 2, 1997 December 31, 1996 and

January 9, 1997

Mercury

December 30, 1996 and

January 2, 1997

January 2, 1997

Percent Solids

Not Applicable

January 2, 1997

December 31, 1996

TPO ACTION:

The results reported for antimony in soil samples MYX309 through MYX315, MYX317, MYX320, MYX321, MYX324, and MYX325 and for selenium in water samples MYX292, MYX294, MYX297, and MYX298 are considered unacceptable as less than 30% of the matrix spike was recovered. See Comment A.

TPO ATTENTION:

None.

97-02-14-HDB-01/25218M03.RPT

SAMPLING ISSUES:

None.

ADDITIONAL COMMENTS:

*The results for equipment blank samples MYX301 and MYX302 are included in Case 25218 Memo #04, SDG MYX293.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. Laboratory blanks and associated samples are listed below the data qualifiers in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work (SOW), ILMO4.0, and the document "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994.

II. <u>Validation Summary</u>

The data were evaluated based on the following parameters:

<u>Para</u>	<u>meter</u>	<u>Acceptable</u>	<u>Comment</u>
1. 2. 3.	Data Completeness Sample Preservation and Holding Times Calibration a. Initial Calibration Verification b. Continuing Calibration Verificatio c. Calibration Blank d. CRDL Standard	Yes Yes Yes	I
4.	Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
9. 10.	ICP Interference Check Sample Analysis Laboratory Control Sample Analysis Spiked Sample Analysis Laboratory Duplicate Sample Analysis Field Duplicate Sample Analysis GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition	Yes Yes No No No	A,B D H E
	ICP Serial Dilution Analysis Sample Quantitation Sample Result Verification	No Yes Yes	F C,G

III. <u>Validity and Comments</u>

- A. The following results are rejected because of matrix spike recovery results outside method QC limits. The results are flagged "R" in Table 1A.
 - Antimony in soil samples MYX309 through MYX315, MYX317, MYX320, MYX321, MYX324, and MYX325
 - Selenium in water samples MYX292, MYX294, MYX297, and MYX298

The matrix spike recovery results for antimony in QC sample MYX311 and for selenium in QC sample MYX292 did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

LOCKHEETMARTIN

<u>Analyte</u>	MYX311 Soil <u>% Recovery</u>	MYX311 Soil % Bias
Antimony	28	-72
<u>Analyte</u>	MYX292 Water <u>% Recovery</u>	MYX292 Water <u>% Bias</u>
Selenium	29	-71

The results reported for antimony and selenium in the samples listed above were below the method detection limit (MDL) and instrument detection limit (IDL), respectively, and are considered unacceptable as less than 30% of the matrix spike was recovered. The low matrix spike recovery indicates an analytical deficiency and false negatives may exist.

According to the ILM04.0 Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. A post-digestion spike recovery result of 107% was obtained for antimony in QC sample MYX311. Since the post-digestion spike recovery was acceptable, the low pre-digestion spike recovery result of 28% obtained for antimony may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, depressing the analytical result.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement methodology.

- B. The following results are estimated because of matrix spike recovery results outside method QC limits. The results are flagged "J" in Table 1A.
 - Antimony in soil samples MYX308 and MYX316
 - Mercury in water samples MYX292, MYX294, MYX297, and MYX298
 - Selenium and zinc in all of the soil samples

The matrix spike recovery results for antimony, selenium, and zinc in QC sample MYX311 and for mercury in QC sample MYX292 did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

<u>Analyte</u>	MYX311 Soil % Recovery	MYX311 Soil <u>% Bias</u>
Antimony Selenium Zinc	28 67 260	-72 -33 +160
<u>Analyte</u>	MYX292 Water % Recovery	MYX292 Water % Bias
Mercury	37	-63

LOCKHEL

Results above the IDL or the MDL are considered quantitatively uncertain. The results reported for antimony in soil samples MYX308 and MYX316 may be biased low. Since the results reported for mercury in water samples MYX292, MYX294, MYX297, and MYX298 and for selenium in all of the soil samples are nondetected, false negatives may exist. The results reported for zinc in all of the soil samples may be biased high.

According to the ILM04.0 Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. Post-digestion spike recovery results of 107% for antimony and 94% for zinc were obtained in QC sample MYX311. Since the post-digestion spike recoveries are acceptable, the low pre-digestion spike recovery of 28% obtained for antimony and the high pre-digestion spike recovery of 260% obtained for zinc may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, enhancing or depressing the analytical result.

A 74% recovery was obtained for arsenic in the matrix spike analysis of QC sample MYX311. This percent recovery, though marginally below the 75-125% criteria for accuracy, is not expected to significantly affect the results reported for arsenic in any of the soil samples.

- C. The following results are estimated and are flagged "J" in Table 1A.
 - All results above the instrument detection limit or the method detection limit but below the contract required detection limit (denoted with an "L" qualifier)

Results above the IDL for waters or the MDL for soils but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- D. The following results are estimated because of laboratory duplicate results outside method QC limits. The results are flagged "J" in Table 1A.
 - Barium in all of the soil samples

Laboratory duplicate results did not meet the ± 35 relative percent difference (RPD) and $\pm 2X$ CRDL criteria for precision as listed below.

MYX311

Soil

<u>Analyte</u>

<u>RPD</u>

Barium

70

The results reported for barium in all of the soil samples are considered quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity, poor laboratory technique, or method defects.

- E. The following results are estimated because of GFAA analytical spike recovery results outside method QC limits. The results are flagged "J" in Table 1A.
 - Selenium in samples MYX294, MYX297, MYX308 through MYX317, MYX320, and MYX321
 - Thallium in samples MYX298, MYX313, and MYX315

The analytical spike recovery results for selenium and thallium in the samples listed above did not meet the 85-115% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

<u>Analyte</u>	Sample Number	<pre>% Recovery</pre>	<pre>% Bias</pre>
Selenium	MYX294	83	-17
	MYX297	65	-35
	MYX308	83	-17
	MYX309	83	-17
	MYX310	81	-19
,	MYX311	65	-35
	MYX312	84	-16
	MYX313	40	-60
	MYX314	82	-18
	MYX315	58	-42
	MYX316	81	-19
	MYX317	80.	-20
	MYX320	70	-30
	MYX321	50	-50
Thallium	MYX298	80	-20
	MYX313	56	-44
	MYX315	60	-40

The post-digestion spike recovery results for selenium and thallium, as noted above, show an analytical deficiency. Since the results reported for selenium and thallium in the samples listed above are nondetected, false negatives may exist.

The post-digestion analytical spike recovery results of 58% in duplicate sample MYX311 for selenium and 42% in duplicate sample MYX311 for thallium also did not meet the 85-115% criteria for accuracy.

It should be noted that the results for selenium in samples MYX294 and MYX297 were previously rejected. Please refer to Comment A.

Arsenic, lead, selenium and thallium were analyzed by the graphite furnace atomic absorption (GFAA) technique, which requires that a post-digestion analytical spike be performed for each sample to establish the accuracy of the individual analytical determination.

- F. The following results are estimated because of ICP serial dilution results outside method QC limits. The results are flagged "J" in Table 1A.
 - Copper in all of the soil samples

The percent difference of the ICP serial dilution analysis of sample MYX311 did not meet the 10% criterion for the analyte shown below.

MYX311 Soil

Analyte

% Difference

Copper

13

The results reported for copper in all of the soil samples are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

- G. The following samples were diluted and the quantitation limits for the analytes shown below have been raised.
 - Lead in sample MYX298
 - Selenium in samples MYX292, MYX298, MYX308 through MYX310, MYX312, MYX314, MYX316, MYX317, MYX324, and MYX325
 - Thallium in samples MYX308 through MYX312, MYX314, MYX316, MYX317, MYX320, MYX321, MYX324, and MYX325

Sample MYX298 for lead was reanalyzed at a five-fold dilution because of a high background obtained in the initial undiluted analysis. The samples listed above for selenium and thallium were diluted by a factor of five because the spike recovery obtained in the original analysis was less than 40%. The low percent recovery obtained for selenium and thallium may be due to chemical or physical interferences. Dilution of the samples is performed to reduce any matrix interferences which may be present and which may be responsible for the low analytical spike recovery. The quantitation limits reported in Table 1A for lead, selenium, and thallium in the samples listed above were raised by the dilution factor.

Note that the results for arsenic in the diluted analyses of samples MYX310 and MYX314 are between the MDL and the CRDL. Therefore these results, which are greater than the CRDL when multiplied by the dilution factor, have been flagged "L" (see Comment C).

It should be noted that the results for selenium in samples MYX292 and MYX298 were previously rejected. Please refer to Comment A.

Analytical spikes are post-digestion spikes prepared prior to analysis by adding a known quantity of the analyte to an aliquot of the digested sample. Arsenic, lead, selenium, and thallium were analyzed by the GFAA technique, which requires the analysis of analytical spikes.

LOCKHEEDMARTIN

H. In the analysis of the field duplicate pairs, the following RPDs were obtained for the analytes listed below.

<u>Analyte</u>	MYX310 MYX324 <u>RPD</u>	
Arsenic Calcium Copper Lead Zinc	122 72 167 182 165	

The results are expected to vary more than laboratory duplicates (± 35 RPD or $\pm 2X$ CRDL criteria for precision) since sampling variability is included in the measurement. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, sample nonhomogeneity, poor sampling or laboratory technique, or method defects.

I. A low recovery of 60% was reported for mercury in the analysis of the CRDL standard (CRA) for soils. While there are no criteria established for CRDL standard recoveries, low recoveries indicate uncertainty for sample results near the CRDL. The low CRA recovery may indicate low bias and possible false negatives for mercury results in all of the soil samples except sample MYX320.

Low Concentration Groundwater

Samples for Total Metals

TABLE 1A

Case No.:

25218 Memo #03

Site:

Victoria Golf Course

February 14, 1997

Lab.:

Analytical Resources, Inc. (ARI)

Reviewer
Date:

Reviewer: Dina David-Bailey, ESAT/Lockheed

Concentration in µg/L

Analysis Type:

Station Location Sample I.D. Date of Collection	nple I.D. MYX292 te of Collection 12/9/96		12/12/9	GW-4-1 MYX294 BG 12/12/96 Result Val Com			7 5	GW-10-1 MYX298 12/11/96			GW-11 MYX29 12/9/96	99 EB	GW-12 MYX3 12/10/9	00 EB	Lab Blank 1		
Parameter	Result	Val Co	n Result	Val	Com	Result	Val Com	Result	Val (Com	Result	Val Com	Result	Val Com	Result	Val Con	
															2323600000000000000000		
Aluminum	20.0 U		82.0 1		C	20.0 U	.h	20.0 t			34.9	en encomposition	20.0	and an annual transfer of	20.0 L	v 2000000000000000000000000000000000000	
Antimony	50.0 U	formania la como	50.0 1	JI		50.0 U		50.0 U	abocccocabec	*********	50.0	(4d):000000 (0000000000)	50.0	sodocesco los cesposoch	50.0 U	el coccessor consent	
rsenic	6.6 L	*******	10.4			6.8 L	· processor processor as	1.2 1	demonstration	2	1.0	and area are horse reserved	1.0	U	1.0 U)	
Barium	95.7 L	taanaa keesa	103	20 20000000	C	60.2 L	olooonaadaaaaaaaa	34.7 I	diaceasadasa	C	1.0	U	1.0	U	1.0 U	ן	
Beryllium	1.0 U		1.0 1	J		1.0 U	J	1.0 t	4		1.0	U	1.0	U	1.0 L)	
Cadmium	2.0 U		2.0 (J		2.0 U	J	2.0 [1		2.0	ט ו	2.0	U	2.0 U	J	
Calcium	1020000		46300			467000		1100000			211	L J C	26.8	L J C	20.0 L	j	
Chromium	5.0 U		5.0 t	J		5.0 U	,	5.0 L	7	l	5.0	U	5.0	U	5.0 U	J	
Cobalt	3.0 U		3.0 1	J		3.0 U	ri i	3.0 t	1		3.0	J	3.0	U	3.0 L	j	
Copper	2.0 U		2.0 t	اار		2.0 U	ı l	2.0 L	J		7.0	L J C	2.0	and the second contraction of	2.0 U	a construction of the construction	
ron	1820		56.5 1	JJ	C	20:0 U		18200			22.7	**************************************	20.0	201222222 2000000000	20.0 U	<u> </u>	
ead	1.0 U		1.0 U	J		1.0 U	down and warren and	5.0 L		3	1.0 1	a because how were h	1.0	values a language to	1.0 U	character branch	
Magnesium	260000		15900			119000		327000			67.0	orbecoccodoccoccocco	20.0	eo foesteen konnonnen ook	20.0 U	0.05000000-00000000	
Manganese	2690		154	1000000000	000000000000000000000000000000000000000	676	1	1970			1.0 U		1.0 1	en hannen kunnen en en e	20.0 U	4	
Mercury	0.10 U	ј В	0.10 t	d i	В	0.10 U	ј В	0.10 U	JE		0.10 1	skaasakaanna k	0.10 (955 kgs:2532 kgs:200000000 c	0.10 U	akaasakaanaan	
Vickel	10.0 U		10.0 U		~	10.0 U	Anna damana	10.0 U	00000000000	terita la	10.0 T	201200200010000000000000000000000000000	10.0 T	controvers constructed a	10.0 U	a harana and harana and	
otassium	18300		6050			10200		21000			400 T	odbococco-booccccccodc	10.0 t	es becorrected and constant a	000000000000000000000000000000000000000	N oosooo kaannaana	
elenium	5.0 U	R AC		T D	AE	1.0 U	R AE	5.0 U	D A	\G		ahaaaahaaaanh	********	***********	400 U		
lver	3.0 U	N A	3.0 t	oleccescolo	AL	3.0 U	K AE	3.0 U	lessocitors	\G	1.0 U	tdeccescobeccescocci	1.0 U	inianan energia	1.0 U	0.0000000000000000000000000000000000000	
odium	580000		54800					200000000000000000000000000000000000000			3.0 t	e kanana kanananan saka	3.0 l	*******	3.0 U	4	
didakan marangan marangan kan di ka			83 000000000000000000000000000000000000			227000		1380000			432 I	ishoodaadhaacaacaadh	50.0 T	88 (5000000) 000000000000000	50.0 U	100000000000000000000000000000000000000	
hallium	1.0 U	· [1.0 L	deconomic		1.0 U		1.0 U	J E		1.0 U	4	1.0 t		1.0 U		
/anadium	2.0 U		2.0 L	doorde		7.0 L	J C	2.0 U	33333	*******	2.3 I	alescendos concessolo	2.3 I	800000000000000000000000000000000000000	2.0 U		
inc	98.5		4.0 L			53.1		64.6			4,0 t	1	4.0 t	J	4.0 U		
										******			S. S. S. S. S. S. S. S. S. S. S. S. S. S		2000-2		
				l	100000000000000000000000000000000000000		2000000	10.00000000000000000000000000000000000					00000000000000000000000000000000000000	6 5000065 kommune			
			1	1 1												ta I	

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample CRDL-Contract Required Detection Limit

TABLE 1A

Case No.: 25218 Memo #03

Site:

Victoria Golf Course

Lab.:

Analytical Resources, Inc. (ARI)

Reviewer: Date: Dina David-Bailey, ESAT/Lockheed

February 14, 1997

Analysis Type:

Low Concentration Groundwater

Samples for Total Metals

Concentration in µg/L

Sample I.D.	IDL			CRDL															
Parameter	Result	Va	l Com	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val Con	Result	Val Com
Aluminum	20.0			200															
Antimony	50.0			60.0			***************************************							****	************	2 199140000000000000000000000000000000000		*	
rsenic	1.0			10.0															
Barium	1.0	ļ		200												2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		** \$5555555555555555555555555555555555	
Beryllium	1.0			5.0															
Cadmium	2.0		20.0000000000	5.0								-							
Calcium	20.0			5000															
Chromium	5.0			10.0	0.000000		000000000000000000000000000000000000000		******		v.								
Cobalt	3.0			50.0															
Copper	2.0			25.0	3 333333		A94440000000000000000000000000000000000	\$30.00 percent	100000000000000000000000000000000000000		00000000	10000000000	400000000000000000000000000000000000000		J				
Iron	20.0			100															
Lead	1.0			3.0	888888				\$8000000000		2201/202020	100000000000000000000000000000000000000		600000000					
Magnesium	20.0			5000															
Manganese	1.0			15.0	<u> </u>									100 00000000	000000000000000000000000000000000000000	355555555555555555555555555555555555555		0.0000000000000000000000000000000000000	
Mercury	0.10			0.20															
Nickel	10.0			40.0					***********			33333333		:1:0:::::::::::::::::::::::::::::::::::			***************************************		
Potassium	1.0			5000															
Selenium	3.0			5.0 10.0					*******					86 (2000)	E000000000				5555455656564 (77.000.000)
lver odium	50.0			5000															
Thallium	1.0			10.0															
Vanadium	2.0	83333		50.0															
Zinc	4.0			20.0															
			restaurassasidi	20.0	488888														
					N000000		***************************************		-00000000000000000000000000000000000000		2 (2000)	500000000000000000000000000000000000000							
		e a servicione.			255000	//////////////////////////////////////		comococida	· 900-0000000		1000000	N 49 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		180000			4		

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample

CRDL-Contract Required Detection Limit

25218 Memo #03 TABLE 1A

Site: Victoria Golf Course

Case No.:

Lab.: Analytical Resources, Inc. (ARI)

Lab.: Analytical Resources, Inc. (ARI)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 14, 1997

Analysis Type:

Low Concentration Soil

Samples for Total Metals

Concentration in mg/Kg

Station Location Sample I.D. Date of Collection	SS-1-10 MYX308 12/10/96	; ; T		SS-1-20 MYX309 12/10/96 Result Val Com			SS-2-10 MYX310 D2 12/10/96			SS-2-20 MYX311 12/10/96			SS-3-10 MYX312 BG 12/10/96		SS-3-20 MYX313 BG 12/10/96			SS-4-10 MYX314 BG 12/10/96		
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val Com	Result	Val (Com	Result	Val	Com
Aluminum	28300			25400			25700			14100			32500		15700			22800		
Antimony	13.6 L	J	вс	11.8 U	R	A	11.2 U	R	Α	12.5 U	R	A	12.3 U	RA	11.4 L	J R	A	11.1 U	J R	A
senic	5.0			5.5			3.2 L	J	CGH	4,5			5.9		5.9			4.4 L	er enemen	CG
Barium	158	J	D	202	J	D	212	J	D	233	J	D	184	J D	115	J	D	127	J	D
Beryllium	0.83 L	J	C	0.66 L	J	С	0.70 L	J	С	0.40 L	J	C	0.87 L	J C	0.47 I	J (c	0.57 L	J	c
Cadmium	0.47 U			0.63 L	J	С	0.48 L	J	С	1.0 L	J	С	0.51 L		0.46 L			0.50 L		C
Calcium	7660			12400			9160		Н	9090			12200		4090			14500		
Chromium	33.7			34.8			30.7			29.5			40.5		37.7			27.3	V 100000	1000000000
Cobalt	15.9			14.4			12.6			7.9 L	J	c	16.5		8.9 L	J	c	11.4		
Copper	36.8	J	F	34.2	J	F	31.1	J	FH	33.1	J	F	35.5	J F	22.4	J	F	26.7	J	F
fron	36800			32500			31100			20400			39000		23300			28100		
Lead	10.7			11.2			10.8		Н	41.8			11.3		6.0			7.7	4.5550.00	
Magnesium	11100			10800			9820			5770			13600		6540			10000		
Manganese	617			613			486			221			496		272			438	1	
Mercury	0.06 U		1	0.06 L	J	CI	0.06 U		1	0.20		1	0.06 U	1	0.15	I		0.06 U	ı	Ī
Nickel	28.2			24.2			20.7			13.3			29.5		17.4			18.1		
Potassium	4820			3980			5260			4170			5190		2840			5230		
Selenium	1.2 U	J	BEG	1.2 U	J	BEG	1.1 U	J	BEG	0.25 U	J	BE	1.2 U	J BEG	0.25 U	J E	BE	1.1 U	J	BEG
ver	0.70 U			0.71 U			0.67 U			0.75 U			0.74 U		0.68 U			0.67 U		
Sodium	2690			1990	0000000		2250			1130 L	J	С	4120		847 L	JC]	875 L	J	C
Thallium	1.2 U		G	1.2 U		G	1.1 U		G	1.3 U		G	1.2 U	G	0.25 U	J E	:	1.1 U		G
Vanadium	73.8	20000000		62.7	0000000		60.5	-0800000	scencorono v	41.7			75.8		49.8			59.3		
Zinc	88.2	J	В	82.6	J	В	76.6	J	ВН	179	J	В	85.2	J B	50,9	JE	3	71.9	J	В
Percent Solids	84.1 %			84.1 %			85.7 %			79.0 %			81.5 %		80.6 %			85.9 %		
													J.J /0		30.0 70	leed o	XXXXX	GJ.7 70		

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit. MDL-Method Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample

CRDL-Contract Required Detection Limit

TABLE 1A

Case No.:

25218 Memo #03

Site:

Victoria Golf Course

Lab.:

Analytical Resources, Inc. (ARI) Dina David-Bailey, ESAT/Lockheed

Reviewer: Date:

February 14, 1997

Analysis Type:

Low Concentration Soil

Samples for Total Metals

Concentration in mg/Kg

Station Location Sample I.D. Date of Collection	SS-4-20 MYX31 12/10/96			SS-5-10 MYX316 12/10/96	· · · · · ·	SS-5-20 MYX31 12/10/96	7 6	SS-7-10 MYX320 12/10/96			SS-7-20 MYX321 12/9/96		SS-9-10 MYX32 12/10/9	SS-10-10 MYX325 D1 12/10/96			
Parameter	Result	Val	Com	Result	Val Co	m Result	Val Com	Result	Val (om	Result V	al Com	Result	Val Com	Result	Va	Con
Aluminum	12100			26800		19700		10800			16400		24400		31400		
Antimony	12.3 U	R	Α	16.6	J B	12.1 U	RA	13.8 U	J R A	**************************************	14.0 U R	A	11.0 U	J R A	11.6	1 R	A
rsenic	4.0			9.2		15.6		6.5			7.3		13.3	H	5.5		
Barium	112	J	D	242	J D	167	J D	821	JI)	341 J	D	250	J D	200	J	D
Beryllium	0.32 L	j j	c	0.73 L	J C	0.61 I	.] j C	0,65 I	staassaabee	20000000 1 5	0.36 L J	esterrers.	0.64 I	odrossoco los decencios de	0.89	0.000	c
Cadmium	0.49 U			0.99 L	J C	0.76 I		6.2	000000000000000000000000000000000000000	000000000	2.0	· · ·	1.5		0.46	***	1900
Calcium	5590			24600		97400		10600			23700		19500	н	9880		dess.
Chromium	16.3			33.0		30.9		912			48.0		33.3		39.1	200000	2 (000000000)
Cobalt	8.3 L	J	c	12.5		11.2 1	. J C	17.2			13.1 L J	c	12.6		15.4		
Copper	16.9	J	F	36.6	J F	30.3	J F	376	J F		176 J	F	345	J FH	38.1	J	F
ron	19200			34000		26000		35800			27200		28700		38200		li.
Lead	5.1			9.5		9.8		942			245		233	н	10.6	000000	40000000
Magnesium	6760			12500		15200		4720			6440		9280		11400		
Manganese	478			581		980		371			368		584		613	03/00/000	***************************************
Mercury	0.05 U		I .	0.06 U	1	0.06 U	ı	0.72			0.31	1	0.14		0.05 t)	1
Vickel	13.9			21.8		26.9		86.8			38.8		29.0		23.8	K 400000	100000000
otassium	2780			6710		2350		3980			4160		5200		5060		
Selenium	0.23 U	J 1	BE	1.1 U	J BE	G 1.2 U	J BEG	0.28 L	J B	Е	0.28 U J	BE	1.1 U	J BG	1.1 U	J J	BG
jilver	0.74 U			0.71 U		0.72 U		1.8 L	J C		0.86 L J	c	0.66 U		0.70 t	j	
odium	356 L	J (c	3010		3180		1370 L	J C		1470		763 L	J C	2730		1000000000
hallium	0.23 U	J I	€	1.1 U	G	1.2 U	G	1.4 U	G		1.4 U	G	1,1 U	G	1.1 L	J	G
'anadium	38.0	saccasilas	0000000000000000000000000000000	. 73.5		56.3		179			50.0		59.0		78.8		000000000
inc	45.8	J I	3	85.3	J B	61.2	J B	1140	J B		832 J	В	802	Ј ВН	97.7	J	В
ercent Solids	81.5 %			83.1 %		90.5 %		71.5.0									
CICCIII OUIUS	70 د. ۵۱		l	83.1 %		80.5 %		71.5 %			70.0 %	1	87.9 %		84.4 %	0	onerenen.

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL-Method Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample CRDL-Contract Required Detection Limit

TABLE 1A

Case No.:

25218 Memo #03

Site:

Victoria Golf Course

Lab.:

Analytical Resources, Inc. (ARI)

Reviewer: Date: Dina David-Bailey, ESAT/Lockheed February 14, 1997 Analysis Type:

Low Concentration Soil

Samples for Total Metals

Concentration in mg/Kg

				T																	
Sample I.D.	Lab Bla	nk 2		MDL	MDL			CRDL													
Parameter	Result	Val	Com	Result	Va	Com	Result	Va	l Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Aluminum	4.0 \	j		4.0			40.0														
Antimony	10.0 U		0000000000	10.0	200000	1000000000	12.0	2/10000	01000000000		300 (300000)	0.0000000000000000000000000000000000000			oli esceptiones			355000000000000000000000000000000000000		0100000	88888888
arsenic	0.20 1	1 1000000	c	0.20			2.0														
Barium	0.20 L		00000000000	0.20	270000	1	40.0	201200000	x4000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	555565666666666666666	2000 2000	100000000000000000000000000000000000000			000000000000000000000000000000000000000		50,600,000	888888
Beryllium	0.20 L	> 1 0000000		0.20			1.0														
Cadmium	0.40 L	10000000		0.40		The second second	1.0			000000000000000000000000000000000000000	***						00040000000	400000000000000000000000000000000000000			399339393
Calcium	15.6 I	1400000	C	4.0			1000														
Chromium	1.0 L			1.0	1		2.0											***************************************	166591969666666	201120000000000000000000000000000000000	.000000000
Cobalt	0.60 L	J		0.60			10.0														
Copper	0.40 L	J		0.40			5.0												. *		
Iron	4.0 L	i		4.0			20.0														
Lead	0.20 U	J		0.20			0.60														000000000
Magnesium	4.0 U			4.0			1000														
Manganese	0.20 U			0.20	ļ.,		3.0]												***************************************
Mercury	0.05 U			0.05			0.10														
Nickel	2.0 U			2.0			8.0												***************************************		
Potassium	80.0 U			80.0			1000														
Selenium	0.20 U			0.20	ļ		1.0														
ilver	0.60 U			0.60			2.0														
Sodium	10.0 U	100000000		10.0		00000000000	1000									543 A44-> 4					
Thallium	0.20 U	1		0.20			2.0														
Vanadium	0.40 U			0.40			10.0			~~~											*******
Zinc	0.80 U			0.80			4.0														
		10000000	0000000000000		1000000				1::::::::::::::::::::::::::::::::::::::												

Val-Validity. Refer to Data Qualifiers in Table 1B.

Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL-Method Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample CRDL-Contract Required Detection Limit

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February, 1994.

- The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence $\underline{\text{or}}$ absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

Laboratory blanks and associated samples

Lab Blank 1: MYX292, MYX294, and MYX297 through MYX300 (Waters)

Lab Blank 2: MYX308 through MYX317, MYX320, MYX321, MYX324, and MYX325 (Soils)

				1
OCK	HEE	Э М А	RTIN	

TPO: [] FYI

[]Attention

[X] Action

Region 9

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>25218</u>	Memo #03	LABORATORY	ARI			
SDG NO. MYX292	2	SITE NAME	Victoria	Golf Cou	rse	
SOW NO. ILM04	. 0	REVIEW COM	PLETION DAT	TE <u>Febru</u>	ary 14, 1997	,
REVIEWER [] ESI	C [X] ESAT	REVIEWER'S	NAME _Dina	a David-E	ailey	_
NO. OF SAMPLES:	WATER 6 SOI	և <u>14</u> Օ՜	THER	7		
		ICP		Нд	Cyanide	
1. PRESERVATION	AND HOLDING TIMES	_ 0_				
2. CALIBRATION		0				
3. BLANKS		_ 0_		o		
4. ICP INTERFERENCE CHECK SAMPLE (ICS) O						
5. LABORATORY CO	ONTROL SAMPLE (LCS)	_ 0				
6. DUPLICATE ANA	ALYSIS	X				
7. MATRIX SPIKE	ANALYSIS	<u>Z</u>	<u>Z</u>	x		
8. METHOD OF STA	M) NOITIDDA DAADNA	SA)				
9. ICP SERIAL DI	ILUTION	X	-			
10. SAMPLE QUANTI	TATION	_ 0	· <u> </u>			
11. SAMPLE VERIF	CATION	o_		_ 0		
12. GFAA ANALYTIC	CAL SPIKE		M			
13. OVERALL ASSES	SSMENT	Z_	<u>z</u>	x		

TPO ACTION: The results reported for antimony in soil samples MYX309 through MYX315, MYX317, MYX320, MYX321, MYX324, and MYX325 and for selenium in water samples MYX292, MYX294, MYX297, and MYX298 are considered unacceptable as less than 30% of the matrix spike was recovered.

TPO ATTENTION: None.

AREAS OF CONCERN: A low recovery of 60% was reported for mercury in the analysis of the CRDL standard (CRA) for soils. While there are no criteria established for CRDL standard recoveries, low recoveries indicate uncertainty for sample results near the CRDL. The low CRA recovery may indicate low bias and possible false negatives for mercury results in all of the soil samples except sample MYX320.

O = Data have no problems or problems that do not affect data quality.

X = Data are qualified due to minor problems.

M = Data are qualified due to major problems.

Z = Data are unacceptable.

N/A = Not Applicable.

In Reference to Case No(s).:
 25218 Memo #03

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

Date of Call:	February 5, 1997
Laboratory Na	me: Analytical Resources, Inc. (ARI)
Lab Contact:	Jeff J. Reitan
Region:	9
Regional Cont	act: <u>Dina David-Bailey, ESAT/Lockheed</u>
Call Initiate	d By: Laboratory <u>X</u> Region
In reference to data for SDG No. MYX292 (Gro	the following sample delivery group(s): oundwater and Soil Samples for Total Metals)

Summary of Questions/Issues Discussed:

- The results reported on Form 1 (page 7), Form 6 (pg. 62), and Form 9 (page 68) for sodium in samples MYX292 and MYX292L appear to be incorrect. Pages 220 and 221 of the raw data indicate a result of 580,000 ug/L for sample MYX292 and a result of 555,300 ug/L for sample MYX292L. Please clarify.
- An incorrectly calculated MSA result for arsenic in sample MYX312 was reported on Form 1 (page 17). The correct result should be 5.7 mg/Kg, not 5.9 mg/Kg as reported. Please clarify.
- 3. The benchsheet for %Solids determination (page 467) shows a tare + dry sample weight of <u>8.388</u> grams for sample MYX325; however, this weight was transcribed incorrectly as <u>8.338</u> grams on the calculation sheet (page 466). An 84.4% solids was obtained by the data validator based on the benchsheet data, as opposed to 83.8% reported on Form 1 (page 26) for sample MYX325. Please clarify.
- 4. The QC results reported on the forms (pages 34-40, etc.) for arsenic appear to be from a different analysis, not associated with this SDG. The QC results obtained for arsenic from the 1-13-97 MSA analyses do not match the reported QC results. Please clarify.
- 5. (a) The ICP runlog does not include the water samples.
 - (b) Data for sample MYX292L were reported but this sample was not marked with an "X" on page 78 of the ICP runlog.
 - (c) Please explain the large time gap between a CCB (run time: 1925) and sample MYX298 (run time: 1941) analyzed by ICP.
- 6. Please explain why most soil samples were initially run diluted for lead by GFAA. Exhibit A, Section II.A.3 of the ILM04.0 SOW specifies that samples must be initially run undiluted.

In Reference to Case No(s).:

25218 Memo #03

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

Summary of Resolution:

- The laboratory corrected and resubmitted Forms 1, 6, and 9 for sodium results in samples MYX292 and MYX292L.
- 2. The laboratory corrected and resubmitted Form 1 for arsenic result in sample MYX312.
- З. The laboratory corrected the percent solids for sample MYX325 based on the benchsheet data and resubmitted the Form 1. The corrected percent solids (84.4) was used to recalculate the results for all of the analytes in sample MYX325.
- The laboratory corrected the ICV/CCV results initially reported for 4. arsenic on the Form 2As. The ICV/CCV results for arsenic now match the raw data.
- 5. (a) The laboratory provided the missing runlog.

 - (b) Page 78 (runlog) was corrected for sample MYX292L.
 (c) The analyst was preparing dilutions, resulting in a large time gap between a CCB and sample MYX298.
- The laboratory states that all dilutions performed for lead by GFAA were 6. based on the ICP data (Exhibit D).

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Contract Laboratory Program REGION 9/LABORATORY COMMUNICATION SYSTEM CSF COMPLETENESS EVIDENCE AUDIT PROGRAM Telephone Communication Summary Form

AUDIT NO.:	2/97/12	LAB CONTACT: <u>Jeff J. Reitan</u>	
CASE NO.:	25218 Memo #03	LAB CODE: ARI	
SDG NO.: _	MYX292	LAB NAME: Analytical Resources,	Inc.
FILENAME:	25218M03.TCS	LAB LOCATION: Seattle, WA	

Summary of Questions/Issues Discussed:

The following items were noted during the case audit of Case 25218/SDG MYX292. Please respond within 10 calendar days of receipt of this Telephone Communication Summary Form by submitting copies of the corrected forms or documenting the corrections in a memorandum or amended case narrative.

- 1. The Lab column was not checked for the presence of Item 1, Inventory Sheet (DC-2).
- The page numbers for Item 3, Inorganic Analysis Data Sheet (Form I-IN), should range from page 0006 to 0026 instead of page 0006 to 0025. Consequently, the beginning page number for Item 4, Initial & Continuing Calibration Verification (Form IIA-IN), should be page 0027 instead of page 0026.
- The Chain-of-Custody Records entry in Item 27, EPA Shipping/Receiving Documents, should list the end page as 0474 instead of page 0473.
- 4. A raw data sheet in between page 384 and 385 was not paginated. The auditor has designated this page as page 384A. Please correct your copy of the data package.

Summary of Resolution:

1.-3. The laboratory corrected and resubmitted a copy of the Form DC-2.

4. The laboratory assigned a pagination number 384A.

Ainedma Dawl-Bailey for MW Auditor, ESAT/Lockheed

January 30, 1997
Date of Contact

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Lockheed Martin Environmental Services

Environmental Services Assistance Team, Region 9 301 Howard Street, Suite 970, San Francisco, CA 94105

Phone: 415-278-0570 Fax: 415-278-0588

ec. Propolar

MEMORANDUM

TO:

Rachel Loftin

Site Assessment Manager

States Planning and Assessment Office, SFD-5

THROUGH:

Rose Fong Coll

ESAT Regional Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Jack Berges Team Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68D60005 Work Assignment No.: 09-96-0-4 Technical Direction No.: 9604113

DATE:

February 14, 1997

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Victoria Golf Course

SITE ACCOUNT NO.: ZZ

CERCLIS I.D. NO.: CAD980818926

CASE NO.:

25218 Memo #04

SDG NO.:

MYX293

LABORATORY:

Analytical Resources, Inc. (ARI)

ANALYSIS:

Total Metals

SAMPLE NO.:

6 Water Samples (See Case Summary)

COLLECTION DATE:

December 10, 11, and 13, 1996

REVIEWER:

Dina David-Bailey, ESAT/Lockheed

The comments and qualifications presented in this report have been reviewed and approved by the EPA Work Assignment Manager (WAM) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Deirdre O'Leary (ESAT/Lockheed) at (415) 278-0585, or Rose Fong (QA Office/EPA) at (415) 744-1534.

Attachment

cc: Bruce Woods, TPO USEPA Region 10

TPO: [X] FYI [] Attention [] Action

SAMPLING ISSUES: [X] Yes [] No

Data Validation Report

Case No.:

25218 Memo #04

Victoria Golf Course

Laboratory: Analytical Resources, Inc. (ARI) Reviewer: Dina David-Bailey, ESAT/Lockheed

February 14, 1997

I. Case Summary

SAMPLE INFORMATION:

SAMPLE #: MYX291, MYX293, MYX295, MYX301, MYX302, and

MYX334

None

COLLECTION DATE: December 10, 11, and 13, 1996

SAMPLE RECEIPT DATE: December 13 and 14, 1996
CONCENTRATION & MATRIX: Low Concentration Groundwater

FIELD QC:

Field Blanks (FB):

Equipment Blanks (EB):

MYX300*, MYX301, and MYX302

(*see Additional Comments)

Background Samples (BG):

Duplicates (D1): MYX295 and MYX334

LABORATORY OC:

Matrix Spike:

MYX293

MYX293

Duplicates:

MYX293

ICP Serial Dilution:

MYX293

ANALYSIS: Total Metals

<u>Analyte</u>	Sample Preparation and Digestion Date	Analysis <u>Date</u>
ICP Metals	January 3, 1997	January 10, 1997
GFAA: Arsenic Lead Selenium Thallium	January 3, 1997 January 3, 1997 January 3, 1997 January 3, 1997	January 10, 1997 January 10, 1997 January 9 through 10, 1997 January 9, 1997
Mercury	January 4. 1997	January 6, 1997

TPO ACTION:

None.

TPO ATTENTION:

None.

SAMPLING ISSUES:

The laboratory case narrative states that sample MYX291 was received unpreserved. All of the analyte results in sample MYX291 are estimated (J) due to inadequate sample preservation.

ADDITIONAL COMMENTS:

*The results for equipment blank sample MYX300 are included in Case 25218 Memo #03, sample delivery group (SDG) MYX292.

97-02-14-HDB-02/25218M04.RPT

ADDITIONAL COMMENTS: (continued)

The sampler designated one laboratory quality control (QC) sample for each of the matrices in this case. This case contains 14 soil samples and 12 water samples. Since the laboratory separated the water samples into two different SDGs, another QC sample (MYX293) was selected by the laboratory for this SDG. However, note that sample MYX293 is a background sample. A QC sample should be an investigative sample collected from sampling points which are known or suspected to be contaminated.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work (SOW), ILMO4.0, and the document "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Parameter</u>	<u>Acceptable</u>	Comment
 Data Completeness Sample Preservation and Holding Times Calibration Initial Calibration Verification Continuing Calibration Verification Calibration Blank CRDL Standard 	Yes No Yes	В
4. Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
5. ICP Interference Check Sample Analysis 6. Laboratory Control Sample Analysis	yes Yes	
7. Spiked Sample Analysis 8. Laboratory Duplicate Sample Analysis 9. Field Duplicate Sample Analysis	No Yes Yes	C
10. GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition	No	D
11. ICP Serial Dilution Analysis 12. Sample Quantitation 13. Sample Result Verification	Yes Yes Yes	A

III. Validity and Comments

- A. The following results are estimated and are flagged "J" in Table 1A.
 - All results above the instrument detection limit but below the contract required detection limit (denoted with an "L" qualifier)

Results above the instrument detection limit (IDL) but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

LOCKHEELMARTIN

- B. The following results are estimated due to inadequate sample preservation. The results are flagged "J" in Table 1A.
 - All of the analytes in sample MYX291

Sample MYX291 did not meet the 40 CFR 136 (Clean Water Act) sample preservation criteria. The laboratory case narrative states that sample MYX291 was received unpreserved. The laboratory indicated that the measured pH in sample MYX291 was not recorded. (See the telephone record log for more information.)

Sample results may be biased low, and where nondetected, false negatives may exist.

The 40 CFR 136 (Clean Water Act) technical holding time criteria were not exceeded for any of the analytes in any of the samples.

- C. The following results are estimated because of matrix spike recovery results outside method QC limits. The results are flagged "J" in Table 1A.
 - Selenium in samples MYX291, MYX293, MYX295, and MYX334

The matrix spike recovery result for selenium in QC sample MYX293 did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for selenium are presented below and are based on an ideal recovery of 100%.

<u>Analyte</u>	MYX293 % Recovery	MYX293 % Bias
Selenium	59	-41

Since the results reported for selenium in the samples listed above are nondetected, false negatives may exist.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement methodology.

- D. The following results are estimated because of GFAA analytical spike recovery results outside method QC limits. The results are flagged "J" in Table 1A.
 - Lead in samples MYX293, MYX301, and MYX302
 - Selenium in sample MYX293

The analytical spike recovery results for lead and selenium in the samples listed above did not meet the 85-115% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

<u>Analyte</u>	Sample Number	<pre>% Recovery</pre>	<u>% Bias</u>
Lead	MYX293	84	-16
	MYX301	84	-16
·	MYX302	74	-26
Selenium	MYX293	53	-47

The post-digestion spike recovery results for lead and selenium, as noted above, show an analytical deficiency. Since the results

reported for lead and selenium in the samples listed above are nondetected, false negatives may exist.

The post-digestion analytical spike recovery result of 50% in duplicate sample MYX293 for selenium also did not meet the 85-115% criteria for accuracy.

Arsenic, lead, selenium and thallium were analyzed by the graphite furnace atomic absorption (GFAA) technique, which requires that a post-digestion analytical spike be performed for each sample to establish the accuracy of the individual analytical determination.

TABLE 1A

Case No.: Site:

Victoria Golf Course

25218 Memo #04

Lab.:

VICCOLIA GOIL COULSE

Reviewer:

Analytical Resources, Inc. (ARI) Dina David-Bailey, ESAT/Lockheed

Date:

February 14, 1997

Analysis Type:

Low Concentration Groundwater

Samples for Total Metals

Concentration in µg/L

Station Location Sample I.D. Date of Collection	GW-1-1 MYX291 12/13/96			GW-3-1 MYX293 12/11/96	,		GW-5-1 MYX295 12/11/96			GW-13-1 MYX301 12/10/96	EB		GW-14-1 MYX302 12/11/96	2 EB		GW-28- MYX33- 12/11/96	4 D1		Lab Bl	· · · · · ·	 .
Parameter	Result	Val	Com	Result	Val	Com	Result	Val C	om	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	l Com
Aluminum	115 L	J	AB	20.0 U			20.0 U			20.0 U			20,0 U			27.7 L	j	A	20,0	11	
\ntimony	50.0 U	photosics.	В	50.0 U	0000000	20100000000	50.0 U	100000000000000000000000000000000000000	x0000000 k0	50.0 U	2000000		50.0 U	100000000000	100000000000	50.0 U	000000000000000000000000000000000000000	5-500000000	50.0	9000 90000	2 222223333
rsenic	1.0 U	J	В	1.0 L	J	A	1.7 L	J A		1.0 U			1.0 U	100000000000000000000000000000000000000		17 L] j	A	1.0	0.0000000	
Barium	92.6 L	J	AB	42.1 L	J	Α	325			1.0 U			1.0 U			339			2.6	and the same	Α
3eryllium	1.0 U	J	В	1.0 U			1.0 U			1.0 U			1.0 U			1.0 U			1.0	000 000000	
Cadmium	2.0 U	J	В	2.0 U			2.0 U			2.0 U			2.0 U			2.0 U	, .		2.0	and the same	
Calcium	314000	J	В	173000			99700			119 L	J	A	32.6 L	J	A	106000			20.0	U	
Chromium	5.0 U	J	В	5.0 U			5.0 U			5.0 U			5.0 U			5.0 U	η		5.0	U	
Cobalt	3.0 U	J	В	3.0 U			3.0 U			3.0 U			3.0 U			3.0 U	ı l		3.0	U	
Copper	2.0 U	J	В	5.8 L	J	Α	2.0 U			3.7 L	J	A	2.0 L	J	A	2.0 U	7		2.0	U	
ron	5960	J	В	20.0 U			20.0 U			20.0 U			20,0 U			20.0 U	rl		20.0	U	
ead	1.0 U	J	В	1.0 U	J	D	1.0 U			1.0 U	J	D	1.0 U	J	D	1.0 U			1.0	U	
/Jagnesium	82400	J	В	45000			38000			20.0 U			20.0 U			40900			20.0	U	
Manganese	1400	J	В	411			419			1.7 L	J	Α	1.3 L	J .	A	451			1.1	L J	Α
Aercury	0.10 U	J	В	0.10 U			0.10 ₺			0.10 U			0.10 U			0.10 U			0.10	U	
Nickel	20.7 L	J	AB	10.0 U	0000000		10.0 U	2000000000000	soosooodaa	10.0 U		500000000000000000000000000000000000000	10.0 U			10.0 U			10.0	U	
otassium	15000	J	В	8570			7730			400 U			400 U			7580			400	U	
Selenium	1.0 U	J	BC	1.0 U	J	CD	1.0 U	1 C		1.0 U	0000000		1.0 U			1.0 U	J	c	1.0	υ	
liver	3.0 U	J	В	3.0 U			3.0 U			3.0 U			3.0 U			3.0 U			3.0	U .	
odium	371000	J	В	418000	0000000	-00000000000000000000000000000000000000	78100		*******	324 L	J	Α	253 L	J	A	83400			99.1	L J	A
hallium	1.0 U	J	В	1.0 U			1.0 U			1.0 U			1.0 U			1.0 U			1.0	U	
/anadium	9.6 L	J	AB	5.7 L	J	Α	6.0 L	J A	000000100	3.0 L	J	Α	3.8 L	30000000 1 500	A	4.6 L	J	A	3.7	L J	A
inc	44.6	J	В	18.3 L	J	A	4.9 L	J A		6.1 L	J	A	4.3 L	J,	4	9.8 L	J	A	4.3	L J	A
		9999999	-2.000000000000000000000000000000000000		neccocidi (4)	A-0000000000		vocasu (2045)	200000 (0)				***************************************		200000000000000000000000000000000000000			2223255			*****

Val-Validity. Refer to Data Qualifiers in Table 1B.

· Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

 $FB-Field\ Blank,\ EB-Equipment\ Blank,\ TB-Trip\ Blank,\ BG-Background\ Sample$

CRDL-Contract Required Detection Limit

TABLE 1A

Case No.: 25218 Memo #04

Site: Victoria Golf Course

Lab.: Analytical Resources, Inc. (ARI)

Reviewer: Dina David-Bailey, ESAT/Lockheed

Date: February 14, 1997

Analysis Type:

Low Concentration Groundwater

Samples for Total Metals

Concentration in µg/L

Sample I.D.	IDL			CRDL																	
Parameter	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Va	Com	Result	Val	Com	Result	Val	Com	Result	Va	Com
Aluminum	20.0			200																	
Antimony	50.0			60.0										**********	vannotinon						
\rsenic	1.0			10.0																	
Barium	1.0	ļ		200																	
Beryllium	1.0			5.0																	
Cadmium	2.0			5.0				2000000		***************************************	00000000	>1>>>>>>					20402000	1000000000	944666000000000000000000000000000000000		
Calcium	20.0			5000																	
Chromium	5.0	nananasa.	5.000000000	10.0				10400000						000000000		-00000000000000000000000000000000000000	244000000		000000000000000000000000000000000000000	0000000000	004000000000
Cobalt	3.0			50.0																	
Copper	2.0		12000000000	25.0				104000000				5150000000000		000000000			504500000				
Iron	20.0			100																	
Lead	1.0	J		3.0								×1000000000000000000000000000000000000						10000000000	600000000000000000000000000000000000000		
Magnesium	20.0			5000																	
Manganese	1.0	545-500000		15.0	+0400000	100000000000		S				100000000000000000000000000000000000000	200000000000000000000000000000000000000				10000000	\$1000000000000000000000000000000000000			
Мегсигу	0.10			0.20																	
Nickel	10.0]		40.0	5000000	00000000000	500000000000000000000000000000000000000				:00			0000000000	200000000000000000000000000000000000000	000000000000000000000000000000000000000	0 2000000				504000000000
Potassium	400			5000																	
Selenium	1.0			5.0				000000						300300000		-00000000000000000000000000000000000000			idalidaannaannan maanna		
Silver	3.0			10.0																	
Sodium	50.0	45555555		5000	0000000	000000000000		0-000000					000000000000000000000000000000000000000		ļ		00000000	5000000000	*****************		
Thallium	1.0			10.0																	
Vanadium	2.0			50.0	2000000					*******************************		000000000000000000000000000000000000000	000000000000000000000000000000000000000	nedonoceno			0.00000000				
Zinc	4.0			20.0																	

Val-Validity. Refer to Data Qualifiers in Table 1B.

· Com.-Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit.

N/A-Not Applicable, NA-Not Analyzed

D1, D2, etc. -Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Trip Blank, BG-Background Sample

CRDL-Contract Required Detection Limit

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February, 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence $\underline{\text{or}}$ absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

TPO: [X] FYI

[]Attention []Action

Region 9

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. <u>25218 Memo #04</u>	LABORA	TORYA	RI		
SDG NO. MYX293	SITE N	AME <u>Vi</u>	ctoria G	olf Cour	se
SOW NO. ILM04.0	REVIEW	COMPLET	ION DATE	Februa	ry 14, 1997
REVIEWER [] ESD [X] ESAT	REVIEW	ER'S NAMI	E <u>Dina</u>	David-Ba	iley
NO. OF SAMPLES: WATER 6 SO	гь	OTHER		•	
•		ICP	GFAA	Нg	Cyanide
1. PRESERVATION AND HOLDING TIMES	3 .	X	<u>x</u>	x	
2. CALIBRATION		0	0		
3. BLANKS		0	0	0	
4. ICP INTERFERENCE CHECK SAMPLE	(ICS)	0			
5. LABORATORY CONTROL SAMPLE (LCS	3)	0	0	N/A	
6. DUPLICATE ANALYSIS		0	_ 0_	_ 0	***************************************
7. MATRIX SPIKE ANALYSIS		0	x	0	
8. METHOD OF STANDARD ADDITION (N	MSA)		N/A		
9. ICP SERIAL DILUTION		0			
10. SAMPLE QUANTITATION		0_		0	·
11. SAMPLE VERIFICATION		0_			
12. GFAA ANALYTICAL SPIKE	÷		x		
13. OVERALL ASSESSMENT		X	x	x	
O = Data have no problems or probl	lems tha	t do not	affect	data qua	lity.

TPO ACTION: None.

TPO ATTENTION: None.

AREAS OF CONCERN: None.

X = Data are qualified due to minor problems.

M = Data are qualified due to major problems.

Z = Data are unacceptable.

N/A = Not Applicable.

In Reference to Case No(s).: 25218 Memo #04

Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

	Date of Call:	February 6, 1997
	Laboratory Name:	Analytical Resources, Inc. (ARI)
	Lab Contact:	Jeff J. Reitan
	Region:	9
	Regional Contact:	Dina David-Bailey, ESAT/Lockheed
	Call Initiated By:	: Laboratory <u>X</u> Region
In re	ference to data for the f SDG No. MYX293 (Groundwa	Following sample delivery group(s): ater samples for Total Metals)
Summa:	ry of Questions/Issues Di	scussed:
1.	The laboratory indicated received unpreserved. I sample MYX291.	d in the case narrative that sample MYX291 was Please provide the actual measured pH value in
2.	Please explain why the mere initially analyzed sample was not.	matrix spike samples for arsenic and thallium at a two-fold dilution, while the unspiked
3.	Did the laboratory call MYX293 for QC analysis? QC analysis on the chair	the Region regarding the selection of sample Sample MYX293 was not specified for laboratory n-of-custody form.
4 .	and MYX293D was reported	rectly indicates that sodium in samples MYX293 from a 5-fold dilution. Raw data and the Form factor of two. Please revise the case narrative
Summaı	ry of Resolution:	
1.	The laboratory used a pH sample MYY291 In the f	I paper but did not record the measured pH in

- In the future, the laboratory will make an effort to record pH values greater than 2.
- 2. Due to high spike levels, the matrix spike samples for arsenic and thallium were diluted in order to quantitate near midpoint of the calibration curve.
- The laboratory did not call the Region regarding the selection of sample MYX293 for laboratory QC analysis but will call in the future. 3.
- The corrected case narrative was resubmitted.

Hereine David-Bailey signature

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Contract Laboratory Program REGION 9/LABORATORY COMMUNICATION SYSTEM CSF COMPLETENESS EVIDENCE AUDIT PROGRAM Telephone Communication Summary Form

AUDIT NO.:	2/97/11	LAB CONTA	CT:	Jeff J	T. Reitan	
CASE NO :	25218 Memo #04	LAB CODE:	AR	I		
SDG NO.: _	MYX293	LAB NAME:	_An	alytical	. Resources,	Inc.
FILENAME:	25218M04.TCS	LAB LOCAT	: NOI:	Seatt	le,_WA	

Summary of Questions/Issues Discussed:

The following items were noted during the case audit of Case 25218/SDG MYX293. Please respond within 10 calendar days of receipt of this Telephone Communication Summary Form by submitting copies of the corrected forms or documenting the corrections in a memorandum or amended case narrative.

- 1. The Lab column was not checked for the presence of Item 1, Inventory Sheet (DC-2).
- 2. The page numbers for Item 24, Preparation Logs Raw Data, should range from page 0299 to 0301 instead of page 0299 to 0302. Consequently, the Airbill entry in Item 27, EPA Shipping/Receiving Documents, should list the beginning page as 0302 instead of page 0303. Page 0302 is the cover page for the EPA Shipping/Receiving Documents.
- 3. Two pages of the ICP raw data were marked as page 94 and no page 96 was found. The auditor designated the ICP raw data for sample MYX293S as page 94, sample MYX295 as page 95, and sample MYX302 as page 96.

Summary of Resolution:

- 1.-2. The laboratory corrected and resubmitted a copy of the Form DC-2.
- The laboratory noted and agreed with the auditor.

Auditor, ESAT/Lockheed

<u>January 31, 1997</u> Date of Contact

Distribution: (1) Lab Copy, (2) Region Copy, (3) CLASS Copy

Contact Log

CONTACT LOG

Site:

Victoria Golf Course

EPA ID: CAD 980818926

Name	Affiliation	Phone	Date	Information
Ryan Huston	Park Water Company	(562) 861-5902	05/29/98	The Park Water System consists of 97 percent imported water. The only system well (31A) within four miles of the site is inactive due to poor water quality.
Koby Cohen	Southern California Water Company	(310) 767-8212	06/02/98	The Southwest System supply is 20 percent groundwater and 80 percent from the Metropolitan Water District. The system serves a total population of 150,000 people. One well (17308 Dalton Ave.) is within four miles of the site. There are a total of 15 wells in the system.
Cheryl Ross	Central Basin Municipal Water District	(310) 660-6200	06/03/98	See Fax.
Mary	Water Replenishment District	(562) 921-5521	06/03/98	See Fax.

CONTACT LOG (Cont'd)

Site:

Victoria Golf Course

Name	Affiliation	Phone	Date	Information
John Foth	Domingues Water Corporation	(310) 834-2625	06/04/98	The Dominguez Water Corporation maintains a water supply system that serves 125,000 people. Fifty percent of the total water supply is from 12 active wells. The remaining fifty percent is purchased from the Metropolitan Water District. Nine of the production wells are within 4 miles of the site. The amount of groundwater supplied from each groundwater well is approximately equal.
Jerald Frison	City of Compton	(310) 605-5524	06/05/98	The City of Compton has a blended drinking water system that serves approximately 52,000 people. Fifty-five percent of the water supply is from eight groundwater wells and 45 percent is purchased from the MWD. Two wells are within four miles of the site. The eight groundwater wells contribute about equally to the water supply.

CONTACT LOG (Cont'd)

Site:

Victoria Golf Course

Name	Affiliation	Phone	Date	Information
Sandy Schaper	City of Torence	(310) 618-6285	06/05/98	City of Torrance has a blended drinking water system that serves approximately 95,000 people. Ten percent of the water supply is from two active wells and 90 percent is purchased from the MWD. The two wells are located between 3 and 4 miles of the site. The groundwater wells supply 43 and 57 percent of the total groundwater supply, respectively. See Fax.
Koby Cohen	Southern California Water Company	(310) 767-8212	06/09/98	The Southern California Water Company's Southwest System is a blended drinking water supply system that serves approximately 150,000 people. The system is supplied with drinking water through 15 active groundwater wells, one of which is within 4 miles of the site (03S/14W-25P04 at 17308 Dalton Avenue). Twenty percent of the total water supply is from groundwater and the remaining 80 percent is purchased from the MWD. Generally, the wells contribute equally to the groundwater system.

FUNDING SOURCES FOR COMMUNITIES

Grant Program	Superfund Technical Assistance Grants (TAGs)	Environmental Justice Community/University Partnership (CUP)	Sustainable Development Challenge Grants (SDCG)	Environmental Education (EE)
Purpose	To enable communities affected by a site on the Superfund National Priorities List (NPL) to obtain technical assistance in interpreting information regarding the site.	To help community groups efficiently address local environmental justice issues through active partnerships with institutions of higher education.	To encourage community groups, businesses, & government agencies to work together on sustainable development efforts that protect the local environment & conserve natural resources while supporting a healthy economy and an improved quality of life.	To provide financial support for projects which design, demonstrate or disseminate environmental education practices, methods or techniques.
Eligible Applicants	Groups must be located near or affected by a site that is either proposed for or on the National Priorities List. Groups must incorporate as nonprofit organizations.	Institutions of higher education which have formal partnerships with one or more community group(s).	-Incorporated nonprofits - Local governments (cities and counties) - Tribes - Educational Institutions - States, Territories, and Possessions (Eligible but encouraged to partner with community groups).	Local, tribal, or state education agencies, colleges & universities, nonprofit organizations, state environmental agencies, & non-commercial educational broadcasting agencies.
Award Amount	Up to \$50,000 initially; in the case of complex sites, additional funds may be available.	Up to \$250,000	Two funding categories: 1. \$50,000 or less 2. \$50,001 to \$250,000	Most awards are for \$5000. Occasionally up to \$25,000.
Total Awarded in Fiscal Year	\$150,000 Regionally in FY97	\$2 million nationally in FY96 \$1.5 million expected in FY97	\$5,000,000 nationally in FY97	\$200,000 Regionally in FY97
Matching Share	20% matching share required; In-kind contributions may be used to meet this match.	No matching share required.	20% matching share required in FY97.	25% matching share required.
Key Dates: - Application Due - Selection	Applications may be submitted after a site is proposed for listing on the NPL.	Due: March 1997 Selection: August 1997	Applications due 8/15/97	Due: November 15 1997 Selection: Spring 1998
Priorities	 Because only one grant is available for each NPL site, EPA encourages groups to consolidate in order to provide technical assistance to the most widely representative group of individuals possible. To this end, EPA notifies the community via a public notice in the local newspaper if an application is received from an eligible group. 	EPA will emphasize meaningful, fully interactive two-way cooperation between communities and institutions of higher education to: • address environmental justice issues, • identify pollution sources, • train residents on their rights and responsibilities, • help resolve environmental problems. Through these partnerships, communities will be encouraged to become involved in accessing information from environmental databases, in cleaning up & restoring communities that have environmental problems & in surveying & monitoring environmental quality.	EPA is looking for projects that: use proactive, innovative approaches to project the environment while providing economic benefits. are supported by and involve diverse interests in the community. have measurable environmental and economic results. foster long-term investments in local sustainability efforts. To receive application kits, call (202) 260-6812 or fax to (202) 260-2555. To access application kis via the Internet: http://www.epa.gov/ecocommunity	Applicants must demonstrate how the proposed project has the potential for wide application and addresses a high priority environmental issue. Projects MUST focus on ONE of the following: • improving environmental education teaching skills; or • educating teachers, students or the public about human health problems; or • building state, local or tribal government capacity to develop environmental education programs; or • promoting environmental careers among students; or • educating the community through a community through a community-based organization; or • educating the general public through print, film, broadcast or other media.
Contact Person EPA Office/Division	Carmen White Superfund Division	Mustafa Ali	Debbie Schechter Cross Media Division	Stacey Benfer Office of External Affairs
Telephone Number Email Address	415 744-2183 white.carmen@ epamail.epa.gov	202 564-2606 ali.mustafa@ epamail.epa.gov	415 744-1624 schechter.debbie@ epamail.epa.gov	415 744-1161 benfer.stacey@ epamail.epa.gov

December 1997

United States Environmental Protection Agency - Region IX
75 Hawthorne Street, San Francisco, CA 94105
This list is also found on the Web at: http://www.epa.gov/region09/funding/index.html

Grant Program	Environmental Justice	Environmental Justice	Pollution Prevention	Brownfields	U.S./Mexico Border
	(EJ)	through Pollution Prevention (EJP2)	Incentives for States (PPIS)	Assessment Demonstration Pilots	Project Grants
Purpose	To provide financial assistance to eligible community groups, & federally recognized tribal governments that are working on or plan to carry out projects to address environmental justice issues.	To empower low income, minority communities through education on environmental issues & to provide pollution prevention resources for addressing these issues.	To build and support state pollution prevention (P2) capabilities and to test, at the state level, innovative pollution prevention approaches and methodologies	EPA's Brownfields Initiative will empower States, communities, & other stakeholders in economic redevelopment to work together in a timely manner to prevent, assess, safely cleanup, & sustainably reuse Brownfields.	These grants will further EPA's efforts toward implementing the Border XXI Program. Border XXI is a new and innovative binational effort which brings together diverse U.S. and Mexican federal and state entities to work cooperatively toward sustainable development.
Eligible Applicants	Any affected community group, church, school, educational institution, non-profit organization, university, or tribal government. Organizations must be incorporated.	Any nonprofit organization incorporated under IRS tax code 501(c)(3), federally recognized Indian tribal government, state, city, county or local government organization.	State agencies, federally-recognized tribes, territories & possessions. States are encouraged to form partnerships with other P2 providers.	States, cities, towns, counties, U.S. Territories, & Indian tribes are eligible to apply.	Cities, counties, towns, councils of governments, local independent agencies, nongovernmental organizations, universities, and Tribes.
Award Amount	Up to \$20,000 per grant	Up to \$100,000 per grant	Up to \$200,000 per grant.	Up to \$200,000 per grant over 2 years	Up to \$40,000 per grant over 1 year
Total Awarded in Fiscal Year	\$3 million nationally or about \$300,000 Regionally in FY96	\$1.5 million nationally in FY96	\$550,000 Regionally in FY97	\$20 million inFY98	Approximately \$500,000 expected nationally in FY97
Matching Share	No matching share required.	For \$50,000 or less, none for requests between \$50,000 -\$100,000, 10% matching share required.	50% matching share required.	No matching share required.	5% matching share (in dollars or in-kind services)required.
Key Dates: - Application Due - Selection	Due: Spring 1998 Selection: Summer 1998	Due:Spring 1998 Selection: Summer 1998	Due: Feb. 1, 1998 Selection: July 1998	Due: Dec. 15, 1997 and March 23, 1998 Selection: 1998	Pre-Proposals due: Call for 1998 due date
Priorities	Applications will meet 2 of the following 3 goals: 1) Facilitate communication & info exchange and create partnerships among stakeholders to address disproportionate, high & adverse environmental exposure. 2) Build community capacity to identify local environmental justice problems & involve the community in the design and implementation of activities to address these concerns. 3) Enhance community understanding of and access to environmental and public health information systems (e.g. Toxic Release Inventory and Geographic Information Systems).	can be supplied to other communities.	prevention. Partnerships between State agencies and other P2 assistance providers are encouraged.	investors, lenders, developers, & other affected parties to join forces & develop creative solutions to assess & clean up contaminated sites & return them to productive use.	development, capacity-building, and coordination among key participants in addressing border (including bi-national) environmental issues.
Contact Person EPA Office/Division	Katy Wilcoxen Env. Justice Team	Eileen Sheehan P2 Team	Bill Wilson P2 Team	Bobbie Kahan Brownfields Team	Pam Teel HQ International Activities 202 260-4896
Telephone Number E-Mail Address	415 744-1565 willcoxen.katy@ epamail.epa.gov	415 744-2190 sheehan.eileen@ epamail.epa.gov	415 744-219 2 wilson.bill@ epamail.epa.gov	415 744-2191 kahan.bobbie@ epamail.epa.gov	teel.pam@ epamail.epa.gov

December 1997

FUNDING SOURCES FOR COMMUNITIES

Grant Program	Childhood Lead Poisoning Prevention (CLPP)	Climate Change Action Plan	Solid Waste Management Assistance (SWMA)	Pesticide Environmental Stewardship Program (PESP)	State Wetlands Protection Grants
Purpose	This grant program funds innovative projects and approaches to prevent lead poisoning in children.	This grant program funds proposals focusing on source reduction, recycling and composting	This grant program provides money for demonstration and educational projects that promote effective integrated solid waste management.	PESP provides funds for research, education, and demonstration of reduced risk pest control techniques and products, in both agricultural and nonagricultural settings.	Assist state, tribal & local wetlands protection efforts. Funds can be used to develop new wetlands protection programs or refine existing protection programs.
Eligible Applicants	Nonprofit entities and local governments.	States, Tribes, Incorporated nonprofits, Universities.	Nonprofit entities, government agencies & Indian tribes.	State agencies only	State and tribal agencies, local governments, and conservation districts.
Award Amount	No greater than \$18,000 per grant.	Variable - Past awards range from \$50,000- \$250,000	Limited funds available; typical award less than \$50,000.	\$30,000 in FY98	Variable.
Total Awarded in Fiscal Year	\$95,000 available in FY97	Formal program began in FY96	\$185,000 awarded Regionally in FY96	FY96: \$117,000 awarded in Region 9 through national competition (\$498,000 awarded nationally)	Awarded \$1,800,000 in FY 96 regionally
Matching Share	No matching share required.	No matching share required.	No matching share required.	15% matching share required.	25% matching share required.
Key Dates: Application Due	Due: June 1998 Selection: September 1998	Call for dates.	Call for dates.	Spring 1998	Due: December 1, 1997 Selection: March 1998
Priorities	Applicants will meet at least two of the four program goals: Develop lead poisoning prevention education efforts (workshops & stakeholder committees) Build community capacity to increase awareness of sources of lead exposure and means of prevention Enhance community access to local data. Conduct educational activities that increase the community's capacity to reduce residential lead exposure.	greenhouse gas reductions.	Encourages the development of innovative processes for realizing integrated waste management. Funded activities might include: source reduction, reuse, recycling, or composting demonstration or educational projects. Partnerships are encouraged. Measurable results related to waste reduction and resource conservation are desirable.		Wetland/Watershed protection demonstration projects River corridor and wetland restoration projects Wetland conservation plans Regulatory programs assessment and monitoring wetland assessment models American Wetlands Month activities
Contact Person EPA Office/Division	Max Weintraub Cross Media Division	Jessica Gaylord Waste Mgmt. Division	Julia Wolfe Waste Mgmt. Division	Roccena Lawatch Pesticides Program	Suzanne Marr Water Division
Telephone Number E-Mail Address	415 744-1129 weintraub.max@ epamail.epa.gov	415 744-2122 gaylord.jessica@ epamail.epa.gov	415 744-2131 wolfe.julia@ epamail.epa.gov	415 744-1068 lawatch.roccena@ epamail.epa.gov	415 744-1974 marr.suzanne@ epamail.epa.gov

December 1997
For other funding information, see also the following WWW site: http://www.epa.gov/ogd

Grant Program	Grant Program Clean Water State Revolving Safe Drinking Water State Water Quality Assessment & Nonpoint Source Water							
	Fund	Revolving Fund	Planning	Pollution Control				
Purpose	Low-interest-loan program established by the federal Clean Water Act to make money available to local agencies for a wide range of water quality improvement projects. U.S. EPA provides funds to each State to establish ongoing loan programs. The State administers the SRF and makes loans for projects that address point and nonpoint sources of water pollution. In 1996, Congress expanded SRF to include a grant program to help rural and disadvantaged communities.	A new funding program established by the Safe Drinking Water State Act of 1996 to provide loans to ensure that drinking water remains safe and affordable. States will administer the program and may provide loan subsidies and loan forgiveness to disadvantaged communities. In addition, States may use a portion of these funds for prevention programs and projects that address source water protection, wellhead protection, and capacity development.	Established by the federal Clean Water Act §205/§604, these funds will support water quality assessment and planning projects which will lead to implementable actions that promote healthy aquatic ecosystems.	Established by the federal Clean Water Act §319, these funds are for the implementation of State nonpoint source pollution control programs. Each State "passes through" a portion of these funds to other entities for implementing specific NPS management practices.				
Eligible Applicants	Public entities (e.g., municipalities, special districts) for construction of treatment facilities. Public and private entities are eligible for implementation of nonpoint source control projects, and for estuary protection plans.	Community water systems and non-profit non-community water systems are eligible.	State Water Quality Program Agencies with pass through to regional public comprehensive planning organizations.	Application and project selection for local "pass through" funds is conducted by the State water quality agency. Eligible applicants include nonprofits, local governments tribes, special districts, educational institutions, and government agencies.				
Award Amount	\$500,000-\$40,000,000	No limit.	\$10,000 - \$150,000	Variable - Past awards range from \$20,000-\$300,000				
Total Awarded in Fiscal Year	\$117,600,000 in FY96 \$55 million expected Regionally in FY97	Approximately \$100 million expected Regionally in FY97	\$460,000 Regionally in FY97	\$4,800,000 Regionally in FY97				
Matching Share	20% non-federal match	20% non-federal match	Varies by State	40% non-federal match				
Application Due Date (Approx.)	Open	Open	Varies	Varies				
Grant Selection Announced	Varies	Varies	Varies	Varies				
Priorities	Increase use of loans for innovative projects that address nonpoint source pollution. Encourage use as a potential primary financing sources for implementing community-based comprehensive watershed management.	States will annually prepare intended use plans identifying eligible projects.	An important goal of this funding program is to support projects which foster local watershed management efforts that protect and enhance environmental conditions.	 Solving priority water quality problems and/or protecting high quality waters. Comprehensive local watershed management Enhancing aquatic and riparian ecosystems Public education and outreach Collaboration and coordination among multiple interests. Commitments that lead to sustained water quality improvements volunteer monitoring 				
Contact Person	Juanita Licata Water Division	Jose Caratini Drinking Water Office	Cheryl McGovern Water Division	Sam Ziegler Water Division				
Telephone Number	415 744-1948 licata.juanita@ epamail.epa.gov	415 744-1852 caratini.jose@ epamail.epa.gov	415 744-2013 mcgovern.cheryl@ epamail.epa.gov	415 744-1990 ziegler.sam@ epamail.epagov				

December 1997
For other funding information, see also the following WWW site: http://www.epa.gov/ogd